Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) S=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
S = 6 +\(2^2.\left(2+2^2\right)+....+2^{98}.\left(2+2^2\right)\)chia hết cho 6
b) Tương tự a
c) ta có S chia hết cho 2 và chia hết cho 5 ( câu b chia hết cho 15 tức chia hết cho 5 ) nên S chia hết cho 10 hay chữ số tận cùng của S là 0
Nhớ ticks đúng cho mình nhé
a) S = 2 + 22 + 23 + 24 + .... + 2100
= ( 2 + 22 ) + ( 23 + 24 ) + .... + ( 299 + 2100 )
= 6 + ( 22 .2 + 22 . 22 ) + ... + ( 298 . 2 + 298 . 22 )
= 6 + 22 ( 2 + 22 ) + .... + 298 ( 2 + 22 )
= 6 + 22 . 6 + .... + 298 . 6
= 6 . ( 1 + 22 + ... + 298 ) chia hêt cho 3 ( vì 6 chia hết cho 3 )
a) S= 2 + 22 + 23 +...+ 2100
S= ( 2+22 ) + ( 23+24 ) +...+( 299 + 2100 )
S= 6+ 22 ( 2+22)+ ...+ 298 (2+22)
S=6+ 22.6+ ...+ 298.6
S= 6.(22+...+298) chia hết cho 3 ( vì 6 chia hết cho 3)
a, ghép cặp 2 số một sẽ ra
b , làm tương tự câu a nhưng ghép cặp 3 số một
c
s chia hết cho 2
s cũng chia hết cho 5
suy ra s chia hết cho cả 2 và 5
vậy số tận cùng của s là 0
câu 1: Ta co 3 số tư nhiên liên tiếp là a; a+1 ; a+2
tổng 3 số tự nhiên liên tiếp là a+ (a+1) + (a+2)= 3a+3 =3(a+1) chia hết cho 3
Câu 2: không đúng
vì 4 số tự nhiên là a; (a+1) ; ( a+2); (a+3) thì tổng 4 số tự nhiên liên tiếp là: a+ (a+1) + ( a+2)+ (a+3)= 4a+6= 2(2a+3)
vì số (2a+3) là số lẻ không chia hết cho 2 nên số 2(2a+3) không chia hết cho 4
Câu 3:
a) Ta có S= 1+3+32+33+........348+349= (1+3)+32(1+3)+......348(1+3)=(1+3)(1+32+.....348)=4(1+32+.....348) chia hết cho 4
b) Từ câu a ta có S= 4(1+32+33+....348) làm tương tự câu a ta có S= 4.4(1+3+32+...347) =..............= 4.4.4.......(1+3)= 449
Số 4 có mũ là lẻ thì tận cùng là số 4 có số mũ chẵn tận cùng là số 6
Vậy S có tần cùng là số 4
a) \(S=1+3+3^2+3^3+...+3^{49}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)
\(=1\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)
\(=1.4+3^2.4+...+3^{48}.4\)
\(=\left(3+1\right)\left(1+3^2+...3^{48}\right)=4\left(1+3^2+...+3^{48}\right)⋮4^{\left(đpcm\right)}\)
b) Ta có: \(S=1+3+3^2+3^3+...+3^{49}\)
\(3S=3+3^2+3^3+...+3^{49}+3^{50}\)
\(3S-S=2S=3^{50}-1\Rightarrow S=\frac{3^{50}-1}{2}\)
Ta thấy: \(3^{50}=3^{4.12}.3^2=\left(3^4\right)^{12}.3^2=81^{12}.9=...9\) (tận cùng là 9)
Suy ra \(3^{50}-1=\left(...9\right)-1=...8\) (tận cùng là 8)
Suy ra \(\Rightarrow S=\frac{3^{50}-1}{2}=\frac{\left(...8\right)}{2}=...4\Rightarrow S\) tận cùng là 4
a) \(S=1+3+3^2+3^3+...+3^{49}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+....+\left(3^{48}+3^{49}\right)\)
\(S=4+\left(3^2.1+3^2.3\right)+....+\left(3^{48}.1+3^{48}.3\right)\)
\(S=4+3^2.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)
\(S=1.4+3^2.4+...+3^{48}.4\)
\(S=\left(1+3^2+...+3^{48}\right).4⋮4\)
\(S=1+3+3^2+3^3+...+3^{48}+3^{49}.\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)
\(S=1\left(1+3\right)+3^2\left(1+3\right)+..+3^{48}\left(1+3\right)\)
\(S=4\left(1+3^2+....+3^{48}\right)\)
\(\Rightarrow S⋮4\)
b, Có : \(S=1+3+3^2+3^3+...+3^{48}+3^{49}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{48}+3^{49}+3^{50}\)
=> 3S - S = ( 1 + 3 + 32 + 33 + ..... + 348 + 349 ) - ( 3 + 33 + 33 + .. + 349 + 350)
\(\Rightarrow2S=3^{50}-1\)
\(\Rightarrow S=\frac{3^{50}-1}{2}\)
\(\Rightarrow3^{50}-1=\left(...9\right)-1=\left(...8\right)\)( tận cùng là 8 )
\(\Rightarrow S=\frac{3^{50}-1}{2}=\frac{....8}{2}=\left(...4\right)\)
=> S có tận cùng là 4
a) \(S=1+3+3^2+3^3+...+3^{48}+3^{49}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)
\(S=4+\left(3^2.1+3^2.3\right)+...+\left(3^{48}.1+3^{48}.3\right)\)
\(S=4+3^2.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)
\(S=1.4+3^2.4+...+3^{48}.4\)
\(S=\left(1+3^2+....+3^{48}\right).4⋮4\)
S = \(\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^{48}+3^{49}\right)\)
= \(4+3^2.\left(1+3\right)+3^4.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)
= \(4+3^2.4+3^4.4+...+3^{48}.4\)
= \(4.\left(1+3^2+3^4+...+3^{48}\right)\text{ chia hết cho 4}\)
=> S chia hết cho 4 (đpcm).
b. Chưa rõ.
c. S = \(1+3+3^2+3^3+...+3^{49}\)
=> 3S = \(3.\left(1+3+3^2+3^3+...+3^{49}\right)\)
=> 3S = \(3+3^2+3^3+3^4+...+3^{50}\)
=> 3S - S = \(\left(3+3^2+3^3+3^4+...+3^{50}\right)-\left(1+3+3^2+3^3+...+3^{49}\right)\)
=> 2S = \(3^{50}-1\)
=> S = \(\frac{3^{50}-1}{2}\left(\text{đpcm}\right)\).
minh hiền bạn làm đúng rùi mong bạn sớm làm được phần b chúc học giỏ
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15