K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

a, Tính 2S rồi S=2S-S= 261-2

b, nhóm 2 số rồi t/c phân phối được chia hết cho 3

nhóm 3 số rồi t/c phân phối được chia hết cho 7

nhóm 4 số rồi t/c phân phối được chia hết cho 15

nhóm 5 số rồi t/c phân phối được chia hết cho 31

nhóm 6 số rồi t/c phân phối được chia hết cho 63

nhóm 7 số rồi t/c phân phối được chia hết cho 127

19 tháng 3 2018

Em tham khảo tại link dưới đây nhé.

Câu hỏi của Nguyễn Hoàng Phi 6 - Toán lớp 6 - Học toán với OnlineMath

24 tháng 10 2019

a) Ta có:  T= (2+22+23+24)+(25+26+27+28)+.....+(257+258+259+260)

                  = 30.1     +       25. (2+22+23+24) +.....+ 257. (2+22+23+24)

                  = 30.1     +       2 . 30      +......+ 257 . 30

                  =30 . ( 25+...+257)

Vì 30 chia hết cho 30

=> T chia hết cho 30

 mà 30 chia hết cho 5

=> T chia hết cho 5

các bài còn lại câu a tương tự bạn tự làm nhé

Phương pháp: nhóm các số hạng để đc 1 số chia hết cho số đó

b) Ta có: S = 165+215

                      = 220 + 215

                      =215 . ( 2+ 1)

                  =215 . 33

Vì 33 chia hết cho 33

=> S chia hết cho 33

CHÚC BẠN HOK TỐT!!!!!!

28 tháng 8 2016

a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)

\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)

\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)

Vậy \(S⋮5\)

28 tháng 8 2016

a) Ta có:

\(S=2+2^3+2^5+...+2^{99}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)

\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)

\(S=2.5+2^3.5+...+2^{97}.5\)

\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)

\(\Rightarrow S⋮5\)

 

28 tháng 10 2016

MÌNH TRẢ LỜI ĐƯỢC NHƯNG KHI MÌNH TRẢ LỜI XONG NHỚ K CHO MÌNH 3 NHE

25 tháng 10 2016

bhhhhhhhhhhhh

Mình chỉ biết làm ý a thôi :)

S = 21 + 22 + 23 + ... + 299 + 2100

S = ( 21 + 22 ) + ... + ( 299 + 2100 )

S = 21( 1 + 2 ) + ... + 299 ( 1 + 2 )

S = 21 . 3 + ... + 299 . 3

S = 3( 21 + ... + 299 ) chia hết cho 3

14 tháng 12 2015

b, Ta có

S= ( 2 + 2) + (2+2) +..... + ( 2 999 + 2 1000 )

  = 2. (2 +1 )+ 2. ( 2+1) +... +2999. (2+1)

  =2.3 +23.3+....+2999.3

  = 3. ( 2 + 2 +...+ 2999)

Vì 3 chia hết cho 3 nên biểu thức trên chia hết cho 3

=> A chia hết cho 3

câu trên tương tự nhưng dễ hơn nên tự đi mà làm

14 tháng 12 2015

dễ mà bạn. Chỉ cần nhóm 2 số đầu với nhau . Rồi cho số 2 ra ngoài 

11 tháng 12 2015

chtt

**** cho tớ nhé

11 tháng 12 2015

S=2+2^2+2^3+2^4+...+2^59+2^60

=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)

=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)

=(1+2+2^2+2^3)(2+...+2^57)

=15.(2+...+2^57) chia hết cho 15

14 tháng 12 2018

Sai đề rồi bạn nhé

14 tháng 12 2018

Đó là đề ôn của mình mà

23 tháng 1 2016

a)  \(S=1+3^2+3^4+3^6+...+3^{2002}\)

\(3^2.S=3^2+3^4+3^6+3^8+...+3^{2004}\)

\(9S-S=\left(3^2+3^4+3^6+3^8+...+3^{2004}\right)-\left(1+3^2+3^4+3^6+...+3^{2002}\right)\)

\(8S=3^{2004}-1\)

\(S=\frac{3^{2004}-1}{8}\)

 

b)  \(S=1+3^2+3^4+3^6+...+3^{2002}\)

\(=\left(1+3^2+3^4\right)+3^6\left(1+3^2+3^4\right)+...+2^{1998}\left(1+3^2+3^4\right)\)

\(=\left(1+3^2+3^4\right)\left(1+3^6+...+3^{1998}\right)\)

\(=91\left(1+3^6+...+3^{1998}\right)\)

\(=7.13\left(1+3^6+...+3^{1998}\right)\)

Vậy S chia hết cho 7