Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S=1+3+3^2+3^3+...+3^{49}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)
\(=1\left(1+3\right)+3^2\left(1+3\right)+...+3^{48}\left(1+3\right)\)
\(=1.4+3^2.4+...+3^{48}.4\)
\(=\left(3+1\right)\left(1+3^2+...3^{48}\right)=4\left(1+3^2+...+3^{48}\right)⋮4^{\left(đpcm\right)}\)
b) Ta có: \(S=1+3+3^2+3^3+...+3^{49}\)
\(3S=3+3^2+3^3+...+3^{49}+3^{50}\)
\(3S-S=2S=3^{50}-1\Rightarrow S=\frac{3^{50}-1}{2}\)
Ta thấy: \(3^{50}=3^{4.12}.3^2=\left(3^4\right)^{12}.3^2=81^{12}.9=...9\) (tận cùng là 9)
Suy ra \(3^{50}-1=\left(...9\right)-1=...8\) (tận cùng là 8)
Suy ra \(\Rightarrow S=\frac{3^{50}-1}{2}=\frac{\left(...8\right)}{2}=...4\Rightarrow S\) tận cùng là 4
a) \(S=1+3+3^2+3^3+...+3^{49}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+....+\left(3^{48}+3^{49}\right)\)
\(S=4+\left(3^2.1+3^2.3\right)+....+\left(3^{48}.1+3^{48}.3\right)\)
\(S=4+3^2.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)
\(S=1.4+3^2.4+...+3^{48}.4\)
\(S=\left(1+3^2+...+3^{48}\right).4⋮4\)
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15
\(S=1+3+3^2+3^3+...+3^{48}+3^{49}.\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)
\(S=1\left(1+3\right)+3^2\left(1+3\right)+..+3^{48}\left(1+3\right)\)
\(S=4\left(1+3^2+....+3^{48}\right)\)
\(\Rightarrow S⋮4\)
b, Có : \(S=1+3+3^2+3^3+...+3^{48}+3^{49}\)
\(\Rightarrow3S=3+3^2+3^3+...+3^{48}+3^{49}+3^{50}\)
=> 3S - S = ( 1 + 3 + 32 + 33 + ..... + 348 + 349 ) - ( 3 + 33 + 33 + .. + 349 + 350)
\(\Rightarrow2S=3^{50}-1\)
\(\Rightarrow S=\frac{3^{50}-1}{2}\)
\(\Rightarrow3^{50}-1=\left(...9\right)-1=\left(...8\right)\)( tận cùng là 8 )
\(\Rightarrow S=\frac{3^{50}-1}{2}=\frac{....8}{2}=\left(...4\right)\)
=> S có tận cùng là 4
a) \(S=1+3+3^2+3^3+...+3^{48}+3^{49}\)
\(S=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{48}+3^{49}\right)\)
\(S=4+\left(3^2.1+3^2.3\right)+...+\left(3^{48}.1+3^{48}.3\right)\)
\(S=4+3^2.\left(1+3\right)+...+3^{48}.\left(1+3\right)\)
\(S=1.4+3^2.4+...+3^{48}.4\)
\(S=\left(1+3^2+....+3^{48}\right).4⋮4\)
S = 72013 - 72012 + 72011 - 72010 + ........ + 73- 72 + 7 - 1
= (72013 - 72012) + (72011 - 72010) + ........ + (73- 72) + (7 - 1)
= 72012(7 - 1) + 72010(7 - 1) + ... + 72(7 - 1) + (7 - 1)
= 72012.6+ 72010.6 + ... + 72.6+ 6
= 6(72012 + 72010 + .... + 72) \(⋮\)6
=> S \(⋮\)6
giải dài lắm bạn ơi,mik làm câu b thui nhé
S = 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203
S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) x 3
Sx 3 = 3 + 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 203 + 3 ^ 204
S x 3 = ( 1 + 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 202 + 3 ^ 203 ) + 3 ^ 204 - 1
S x3 = S + 3 ^ 204 - 1
S x 2 = 3 ^ 204 - 1 ( cũng bớt cả 2 vế đi S )
S = 3 ^ 204 - 1 : 2
S = 3 ^ 4 x 51 - 1 : 2
S = (3^4) ^ 51 - 1 : 2
S = 81 ^ 51 - 1 : 2
Vì 81 ^ 51 luôn có t/c = 1 ( do số có t/c =1 khi nâng lên bất kì lũy thừa nào đều có t/c = 1)
=> 81 ^ 51 - 1 co t/c = 0
=> 81 ^ 51 - 1 : 2 co t/c = 5
Hay S có t/c = 5
Vay S co t/c =5
Ung ho nha