K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2016

S=\(\frac{4^{39}-1}{3}\)

b)lấy 4^39 -1 chia cho 15

\(4^{10}\)đồng dư vs 1 theo mod 15

4^30 đồng dư với 1 theo mod 15

4^39 đồng sư với  4 theo mod 15

4^39-1 đồng dư với 3 theo mod 15

\(\Rightarrow\)4^39-1=15k+3

S=\(\frac{4^{39}-1}{3}=\frac{15k+3}{3}=5k+1\)

c)5:21 dư 5

12 tháng 1 2019

ko biết

9 tháng 1 2016

5S = 5^2+5^3 + 5^4+.....+5^98

5S - S = (5^2-5^2)+(5^3-5^3) + ... + (5^97 - 5^97) + 5^98-5

4S = 5^98-5

Vậy S = \(\frac{5^{98}-5}{4}\)

 

a/ Ta có:S = 5+5^2+5^3+5^4+......+5^96+5^97

=>5S=5^2+5^3+5^4+....+5^97+5^98

=>5S-S=5^98-5

=>4S=5^98-5

=>S=5^98-5/4

 

21 tháng 2 2020

Câu 1 :

a) Ta có : S=5+52+53+...+52006

5S=52+53+54+...+52007

\(\Rightarrow\)5S-S=(52+53+54+...+52007)-(5+52+53+...+52006)

\(\Rightarrow\)4S=52007-5

\(\Rightarrow S=\frac{5^{2007}-5}{4}\)

b) Ta có : S=5+52+53+...+52006

=(5+53)+(52+54)+...+(52004+52006)

=5(1+52)+52(1+52)+...+52004(1+52)

=5.26+52.26+...+52004.26\(⋮\)26

Vậy S\(⋮\)26

21 tháng 2 2020

Câu 2 :

Gọi số cần tìm là : a. Điều kiện : a\(\in\)N*.

Vì a chia cho 3 dư 1, chia cho 4 dư 2, chia cho 5 dư 3 và chia cho 6 dư 4 nên ta có ; a-1\(⋮\)3 ; a-2\(⋮\)4 ; a-3\(⋮\)5 và a-4\(⋮\)6

\(\Rightarrow\)a-1+3\(⋮\)3 ; a-2+4\(⋮\)4 ; a-3+5\(⋮\)5 ; a-4+6\(⋮\)6

\(\Rightarrow\)a+2 chia hết cho cả 3, 4, 5 và 6

\(\Rightarrow\)a+2\(\in\)BC(3,4,5,6)

Ta có : 3=3

            4=22

            5=5

            6=2.3

\(\Rightarrow\)BCNN(3,4,5,6)=22.3.5=60

\(\Rightarrow\)BC(3,4,5,6)=B(60)={0;60;120;180;240;300;...}

\(\Rightarrow\)a\(\in\){-2;58;118;178;238;298;358;418;...}

Mà theo đề bài, a nhỏ nhất và chia hết cho 11

\(\Rightarrow\)a=418

Vậy số cần tìm là 418

13 tháng 12 2016

b10:

1.\(A=\left(\frac{999-1}{2}+1\right).\frac{999+1}{2}=250000\)

2. \(B=\left(1+3+...+2017\right)-\left(2+4+...+2016\right)\)

\(=2017.\frac{2017+1}{2}-\left(\frac{2016-2}{2}+1\right).\frac{2016+2}{2}\)

đến đây bạn bấm máy đi nhé!

3. \(C=3+3^2+3^3+...+3^{99}\left(1\right)\)

Nhân hai vế của (1) vs số 3 ta được:

\(3C=3^2+3^3+...+3^{100}\left(2\right)\)

Lấy (2)-(1) theo vế ta được: \(3C-C=3^{100}-3\)

=> C=\(\frac{3^{100}-3}{2}\)

4. Làm giống hết câu 3 luôn nhé, chỉ là nhân với 4 thôi.

23 tháng 10 2020

a) \(S=5+5^2+5^3+5^4+.......+5^{96}\)

\(\Rightarrow5S=5^2+5^3+5^4+5^5+.........+5^{97}\)

\(\Rightarrow5S-S=5^{97}-5\)

\(\Rightarrow4S=5^{97}-5\)\(\Rightarrow S=\frac{5^{97}-5}{4}\)

b) \(S=5+5^2+5^3+5^4+..........+5^{96}\)

\(=\left(5+5^4\right)+\left(5^2+5^5\right)+\left(5^3+5^6\right)+.....+\left(5^{93}+5^{96}\right)\)

\(=5\left(1+5^3\right)+5^2.\left(1+5^3\right)+5^3.\left(1+5^3\right)+......+5^{93}.\left(1+5^3\right)\)

\(=5\left(1+125\right)+5^2.\left(1+125\right)+5^3.\left(1+125\right)+......+5^{93}.\left(1+5^3\right)\)

\(=5.126+5^2.126+5^3.126+......+5^{93}.126\)

\(=126.\left(5+5^2+5^3+.........+5^{93}\right)⋮126\)( đpcm )

28 tháng 8 2016

a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)

\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)

\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)

Vậy \(S⋮5\)

28 tháng 8 2016

a) Ta có:

\(S=2+2^3+2^5+...+2^{99}\)

\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)

\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)

\(S=2.5+2^3.5+...+2^{97}.5\)

\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)

\(\Rightarrow S⋮5\)