Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(9S=9+9^2+9^3+...+9^{2018}\)
=>\(8S=9^{2018}-1\)
hay \(S=\dfrac{9^{2018}-1}{8}\)
b: \(S=\left(1+9\right)+9^2\left(1+9\right)+...+9^{2016}\left(1+9\right)\)
\(=10\left(1+9^2+...+9^{2016}\right)⋮10\)
S = 2 + 22 + 23 + ..... + 28 + 29
S = ( 2 + 22 + 23) + ........ + ( 27 + 28 + 29 )
S = 2 . ( 1 + 2 + 4 ) + ....... + 27 . ( 1 + 2 + 4 )
S = 2 . 7 + ........ + 27 . 7
Vì mỗi tích trên đều chia hết cho 7 \(\Rightarrow\)S chia hết cho 7
=(2+22+23) +(24 +25+26)+(27+28+29)
=2(1+2+22)+24(1+2+22)+27(1+2+22)
=(1+2+22)(2+24+27)
=7(2+24+27)
vậy S chia hết cho 7
a, S = 5+52+53+.....+52006
5S = 52+53+54+....+52007
4S = 5S - S = 52007-5
=> S = \(\frac{5^{2007}-5}{4}\)
b, Nếu chia hết cho 156 thì mik làm được còn 126 thì chịu
S=1+2+2^2+2^3+...+2^59
S=(1+2)+(2^2+2^3)+...+(2^58+2^59)
S=3+2^2(1+2)+...+2^58.(1+2)
S=3+2^2.3+...+2^58.3
S= 3.( 1+2^2+...+2^58) chia hết cho 3
S=1+2+2^2+2^3+...+2^59
S=(1+2+2^2)+(2^3+2^4+2^5)+...+(2^57+2^58+2^59)
S=7.2^3(1+2+2^2)+....+2^57(1+2+2^2)
S=7+2^3.7+...+2^57.7
S=7.(1+2^3+...+2^57) chia hết cho 7
S= 1+2+2^2+2^3+...+2^59
S=(1+2+2^2+2^3)+(2^4+2^5+2^6+2^7)+...+(2^56+2^57+2^58+2^59)
S=15+2^4(1+2+2^2+2^3)+...+2^56(1+2+2^2+2^3)
S=15+2^4.15+...+2^56.15
S=15(1+2^4+...+2^56) chia hết cho 15
chắc chắn đúng tick cho mình nhé!
Sorry nha Mình chỉ giải được phần b thôi à(Nhớ tích cho mình đó)
b) S=30+31+32+33+.......+339
=(30+31+32+33)+.......+(336+337+338+339)
=30.(1+31+32+33)+.......+336.(1+31+32+33)
=30.40+........+336.40
Suy ra S chia hết cho 40
Có thẹt đây là toán lớp 6 ko ??
a: \(9S=9+9^2+9^3+...+9^{2018}\)
=>\(8S=9^{2018}-1\)
hay \(S=\dfrac{9^{2018}-1}{8}\)
b: \(S=\left(1+9\right)+9^2\left(1+9\right)+...+9^{2016}\left(1+9\right)\)
\(=10\left(1+9^2+...+9^{2016}\right)⋮10\)