K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2020

\(S=1-3+3^2-3^3+...+3^{98}-3^{99}\)

\(=3^0-3^1+3^2-3^3+...+3^{98}-3^{99}\)có 100 hạng tử

\(=\left(3^0-3^1+3^2-3^3\right)+\left(3^4-3^5+3^6-3^7\right)+...+\left(3^{96}-3^{97}+3^{98}-3^{100}\right)\) có 25 cặp

\(=-20+3^4.\left(-20\right)+...+3^{96}.\left(-20\right)\)

\(=-20\left(1+3^4+...+3^{96}\right)⋮-20\)

10 tháng 8 2018

\(A=1+2^2+2^3+...+2^{2018}\)

\(2A=2+2^2+...+2^{2019}\)

\(2A-A=\left(2+2^2+...+2^{2019}\right)-\left(1+2^2+2^3+...+2^{2018}\right)\)

\(A=2^{2019}-1\)

\(\Rightarrow A+1=2^{2019}-1+1=2^{2019}\)

\(\Rightarrow A+1\)là một lũy thừa

                            đpcm

10 tháng 8 2018

mạo phép chỉnh đề

\(A=1+2+2^2+2^3+...+2^{2018}\)

=> \(2A=2+2^2+2^3+2^4+....+2^{2019}\)

=>  \(2A-A=\left(2+2^2+2^3+2^4+...+2^{2019}\right)-\left(1+2+2^2+2^3+....+2^{2018}\right)\)

=>  \(A=2^{2019}-1\)

=>  \(A+1=2^{2019}\)

Vậy  A+ 1 là một lũy thừa

17 tháng 1 2016

a/ta có:s=(1-3+32-33)+.................+(396-397+398-399)

=-20+.....................+396.(-20.(1+...................396))

suy ra s chia het cho -20

b/ 3s=3-32+33-34+.................+399-3100

3s+s=(3-32+33-34+..........................+399-3100 +(1-3+32-33)+............+398-399)

4s=1-3100

s=(1-3100):4

​vì s chia hết cho -20 suy ra s chia hết cho 4 suy ra 1-3100 chia hêt cho 4 suy ra 3100:4 dư 1

nếu đúng thì tíc cho mình 2 cái nhé!

 

2 tháng 1 2019

tao lam nhanh va dung nhat nay k di

9 tháng 11 2018

Câu 1 )215-211 không chia hết cho 17 bạn ạ

9 tháng 11 2018

Mk nghĩ đề câu 1 là chứng minh 215+211 chia hết cho 17.

Đây là cách giải của mk:

215+211= 211(24+1)= 211(16+1)= 211.17 chia hết cho 17.

=> 215+211 chia hết cho 17.

12 tháng 2 2016

 S = 1-3 + 3-33 +…….+ 398 – 399

=>3S=3-32+33-34+...+399-3100

=>3S+S=(1-3+32-33+...+398-399)+(3-32+33-34+....+399-3100)

=>4S=1-3100

=>S=1-3100/4

 

12 tháng 2 2016

-100 , ủng hộ mk nha

9 tháng 8 2016

Đáng nhẽ đê như vầy: 

 A= 2 + 22 + 23 + 2+ ..... + 22015

 => A = (2 + 23) + ( 22 + 24 ) + ..... + ( 22012 + 22014​) + (22013 + 22015)

 <=> A = 2.( 1 + 4 ) + 22. ( 1 + 4) + ...... + 22012.(1 + 4) + 22013.(1 + 4)

=> A = 2.5 + 22. 5 + ...... + 22012.5 + 22013.5

=> A = 5. ( 2 + 22 + 23 + .... + 22013) chai hết cho 5

9 tháng 8 2016

còn 2 và 3 nũa mà

13 tháng 10 2018

\(S=1+2+2^2+...+2^{99}\)

\(S=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{98}+2^{99}\right)\)

\(S=3+2^2.3+...+2^{98}.3\)

\(=3\left(1+2^2+...+2^{98}\right)⋮3\)