Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(S=2+2^3+2^5+...+2^{59}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{57}+2^{59}\right)\)
\(S=2.\left(1+2^2\right)+2^3.\left(1+2^2\right)+...+2^{57}.\left(1+2^2\right)\)
\(S=\left(2+2^3+2^5+...+2^{57}\right).5⋮5\)
Vậy \(S⋮5\)
a) Ta có:
\(S=2+2^3+2^5+...+2^{99}\)
\(S=\left(2+2^3\right)+\left(2^5+2^7\right)+...+\left(2^{97}+2^{99}\right)\)
\(S=2\left(1+2^2\right)+2^3\left(1+2^2\right)+...+2^{97}\left(1+2^2\right)\)
\(S=2.5+2^3.5+...+2^{97}.5\)
\(S=\left(2+2^3+...+2^{97}\right).5⋮5\)
\(\Rightarrow S⋮5\)
a: \(M=\left(1+3^2+3^4+3^6\right)+...+3^{992}\left(1+3^2+3^4+3^6\right)\)
\(=820\left(1+...+3^{992}\right)⋮41\)
b: \(9M=3^2+3^4+...+3^{1000}\)
\(\Leftrightarrow8M=3^{1000}-1\)
hay \(M=\dfrac{3^{1000}-1}{8}\)
Ta có
C= 2+2^2+2^3+2^4+...+2^100
=> 2C= 2^2+2^3+2^4+2^5+...+2^101
=> 2C-C = 2^101-2
=> C= 2^101-2
Ta có C=2+2^2+2^3+...+2^100
=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+...+(2^97+2^98+2^99+2^100)
=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+...+2^97(1+2+2^2+2^3)
=2.15+2^5.15+...+2^97.15
=15(2+2^5+...+2^97) chia hết cho 15
=> Đpcm
S = 1 + 2 + 22 + 23 + ... + 2100
2S = 2 . ( 1 + 2 + 22 + 23 + ... + 2100)
2S = 2 + 22 + 23 + 24 + ... + 2101
2S - S = ( 2 + 22 + 23 + 24 + ... + 2101 ) - ( 1 + 2 + 22 + 23 + ... + 2100 )
1S = 2101 - 1
S = 2101 - 1
Vậy S = 2101 - 1
Học tốt!!!
1/ \(S=1+2+2^2+...+2^{99}\)
\(\Rightarrow2S=2+2^2+2^3+...+2^{100}=\left(1+2+2^2+...+2^{99}\right)+2^{100}-1=S+2^{100}-1\)
\(\Rightarrow S=2^{100}-1\)
2/ Mọi số tự nhiên có tận cùng bằng 6 thì lũy thừa của nó luôn tận cùng là 6.
Ta có : \(2^{100}=\left(2^4\right)^{25}=16^{25}\) luôn tận cùng là 6
=> S tận cùng là 5
3/ \(S+1=2^{100}=\left(2^{50}\right)^2\) là một số chính phương
a, S = 1 + 21+2+3+...+99= 1 + 24950
Vì 4950 chia hết cho 9 mà 1 chia 9 dư 1 => S chia 9 dư 1.
b,
S + 1 = 1 + 1 + 24950= 24951
Vì 2 = 2 => n-1 = 4951
n= 4951 + 1
n= 4952.
Đáp số : a, 1.
b, 4952.