Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=2+2^2+2^3+2^4+...+2^59+2^60
=(2+2^2+2^3+2^4)+...+(2^57+2^58+2^59+2^60)
=2(1+2+2^2+2^3)+...+2^57(1+2+2^2+2^3)
=(1+2+2^2+2^3)(2+...+2^57)
=15.(2+...+2^57) chia hết cho 15
a) S=(2+22)+22(2+22)+24(2+22)+.....+298(2+22)
S=(2+22)(1+22+24+....+298)
s=6(1+22+24+....+298)
Vi 6 chia het cho 3.Suyra S chia het cho 3
Moi cac ban xem tiep phan sau vao ngay mai
a. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2)+2^3.(1+2)+2^5.(1+2)+....+2^99(1+2)
=2.3+2^3.3+2^5.3+...+2^99.3
=3.(2+2^2+2^5+...+2^99)
=> 3 chia hết cho 3
b. S=2+2^2+2^3+2^4+...+2^100
= 2.(1+2+4+8)+2^5.(1+2+4+8)+2^9(1+2+4+8)+...+2^96.(1+2+4+8)
=2.15+2^5.15+2^9.15+...+2^96.15
=> S chia hết cho 15
Chọn mình nhé:
1+2+22+23+24+25+26+27
=(1+2)+(22+23)+(24+25)+(26+27)
=3+2(1+2)+...+26(1+2)
=3+2.3+...+26.3
Ta thấy mỗi thừa số đều chia hết cho 3 nên S chia hết cho 3
S = 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7
S = (1+2) + (2^2 + 2^3) + (2^4 + 2^5) + (2^6 + 2^7)
S = (1+2) + 2^2 (1+2) + 2^4 (1+2) + 2^6 (1+2)
S = 3*1 + 2^2 * 3 + 2^4 * 3 + 2^6 * 3
S = 3 * (1 + 2^2 + 2^4 + 2^6)
Vì 3 ⁝ 3
nên 3 * (1 + 2^2 + 2^4 + 2^6) ⁝ 3
Vậy S ⁝ 3
S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
S = (1 + 2) + (22 + 23) + (24 + 25) + (26 + 27)
S = 1(1 + 2) + 22(1 + 2) + 24(1 + 2) + 26(1 + 2)
S = (1 . 3) + (22 . 3) + (24 . 3) + (26 . 3)
S = 3 . (1 + 22 + 24 + 26) ⋮ 3
S ⋮ 3
\(S=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{15}+2^{16}+2^{17}\right)\)
\(S=7+2^3\left(1+2+2^2\right)+...+2^{15}\left(1+2+2^2\right)\)
\(S=7\left(1+2^3+...+2^{15}\right)\) chia hết cho 7
a) Đặt biểu thức trên là A, ta có:
A = 21 + 22 + 23 + 24 + ... + 299 + 2100
=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)
=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)
=> A = 21.3 + 23.3 + ... + 299.3
=> A = 3(21 + 23 + ... + 299)
=> A ⋮ 3
\(26=13.2\)
\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)
\(s=3.13+3^413+.....+3^{2012}.13\)
\(s=13.\left(3+3^4+....+3^{2012}\right)\)
\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)
\(s=3.4+3^3.4+....+3^{2015}.4\)
\(s=4.\left(3+3^3+.....+3^{2015}\right)\)
\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)
\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)
\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)
\(S=1+2+2^2+2^3+...+2^{2015}\)
\(=\left(1+2+2^2+2^3\right)+...+\left(2^{2012}+2^{2013}+2^{2014}+2^{2015}\right)\)
\(=\left(1+2+2^2+2^3\right)+...+2^{2012}\left(1+2+2^2+2^3\right)\)
\(=1.15+...+2^{2012}.15=15\left(1+...+2^{2012}\right)⋮15^{\left(đpcm\right)}\)