K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

Ta có: S= 1+2+22+23+..............+22018+22019

S= (1+2+22+23)+............+(22016+22017+22018+22019)

S=1(1+2+22+23)+..........+22016(1+2+22+23)

S=1.(1+2+4+8)+.................+22016(1+2+4+8)

S=1.15+.....................+22016.15

S=15.(1+.....+22016)

S=3.5.(1+......+22016) \(⋮\) 3

Vậy S chia hết cho 3 ( đpcm).

6 tháng 1 2019

mik cần gấp

8 tháng 11 2018

Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29

                     2S = 2(1 + 2 + 22 + 23 + ... + 29)

                     2S = 2 + 22 + 23 + ... + 210

                 2S -  S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)

                        S = 210 - 1 = 28.4 - 1

Vậy S < 5 x 28

9 tháng 11 2018

Bn có thể giải cho mik bài2 và bài4 đc ko ngay bây giờ nhé

19 tháng 12 2015

S=(1+2)+(22+23)+.....+(26+27)

S=   3   +22(1+2)+....+26(1+2)

S=   3   +22.3+.....+26.3

S=   3(1+22+.....+26)chia hết cho 3

Tick mình đầu tiên nha

9 tháng 12 2019

Ta có : S=22020+22019+22018+22017+22016+22015+22014+22013

              =22013(27+26+25+24+23+22+2+1)

             =22013.255

Vì 255\(⋮\)15 nên 22013.255\(⋮\)15

hay S\(⋮\)15

Vậy S\(⋮\)15.

28 tháng 10 2020

a,

+ nếu n \(⋮\) 2 \(\Rightarrow n\left(n+5\right)⋮2\)

+ nếu 2 chia 2 dư 1

=> n có dạng 2k+1

=> n(n+5) = (2k+1)(2k+6) = 2(2k+1)(k+3) \(⋮2\)

=> \(n\left(n+5\right)⋮2\forall n\)

vậy.....

b, \(A=4+4^2+4^3+...+4^{2019}\)

\(4A=4^2+4^3+4^4+...+4^{2020}\)

\(3A=4^{2020}-4\)

\(A=\frac{4^{2020}-4}{3}\)

vậy.......

28 tháng 10 2020

bạn làm có đúng ko đó

28 tháng 12 2020

tự học đi chứ

28 tháng 12 2020

S = 1 + 4 + 42 + 43 + 44 + ... + 42019

S = (1 + 4) + ( 42 + 43) + (44 + 45) +... + (42018 + 42019)

S = (1 + 4) + 42(1 + 4) + 44(1 + 4) + ... + 42018(1 + 4)

S = 5 + 42.5 + 44.5 + ... + 42018.5

S = 5(1 + 42+ 44 +... + 42018\(⋮\) 5 (ĐPCM)

19 tháng 12 2015

cái lòn con gái banh ra , con kẹt con trai thụt vào rồi liếm vào đó...........( tự hiểu, phê chưa)

12 tháng 8 2018

a) Đặt biểu thức trên là A, ta có:

A = 21 + 22 + 23 + 24 + ... + 299 + 2100

=> A = (21 + 22) + (23 + 24) + ... + (299 + 2100)

=> A = 21.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)

=> A = 21.3 + 23.3 + ... + 299.3

=> A = 3(21 + 23 + ... + 299)

=> A ⋮ 3

\(26=13.2\)

\(s=3.\left(1+3+9\right)+3^4.\left(1+3+9\right)+....+3^{2012}.\left(1+3+9\right)\)

\(s=3.13+3^413+.....+3^{2012}.13\)

\(s=13.\left(3+3^4+....+3^{2012}\right)\)

\(\Rightarrow s=3.\left(1+3\right)+3^3.\left(1+3\right)+.......+3^{2015}.\left(1+3\right)\)

\(s=3.4+3^3.4+....+3^{2015}.4\)

\(s=4.\left(3+3^3+.....+3^{2015}\right)\)

\(\Rightarrow4⋮2\Rightarrow4.\left(3+3^3+....+3^{2015}\right)⋮2\)

\(\Rightarrow s⋮2\Leftrightarrow s⋮13\)

\(\Rightarrow s⋮\orbr{\begin{cases}13\\2\end{cases}}\Leftrightarrow s⋮26\)

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12