Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x+y=a,y+z=b;x+z=c\)
Ta có : \(P=Q\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)
\(\Leftrightarrow2a^2+2b^2+2c^2=2ab+2bc+2ac\)
\(\Leftrightarrow2a^2+2b^2-2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Do \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\forall a;b;c\)
\(\Rightarrow\left\{{}\begin{matrix}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\end{matrix}\right.\)
\(\Rightarrow a=b=c\)
\(\Rightarrow x+y=y+z=z+x\)
Lại có : \(\left\{{}\begin{matrix}x+y=y+z\\y+z=z+x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=z\\x=y\end{matrix}\right.\)\(\Rightarrow x=y=z\)
Vậy \(P=Q\Leftrightarrow x=y=z\)
Đặt a = x+y, b = y+z, c = z+x thì
P = a2 + b2 + c2 và Q = ab + bc + ca
Khi P = Q
<=> a2 + b2 + c2 = ab + bc + ca
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
Vì mỗi số hạng lớn hơn hoặc bằng 0 nên dấu "=" xảy ra khi a = b = c
Vậy............................
\(P=Q\) thì \(x=y=z\) lật lại là \(x=y=z\) thì \(P=Q\) ta thay vào xem nó đúng thật ko nhé :v
Với \(x=y=z\) thì \(P=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)
\(=\left(x+x\right)^2+\left(x+x\right)^2+\left(x+x\right)^2\)
\(=\left(2x\right)^2+\left(2x\right)^2+\left(2x\right)^2=4x^2+4x^2+4x^2=12x^2\)
Với \(x=y=z\) thì \(Q=\left(x+y\right)\left(y+z\right)+\left(y+z\right)\left(x+z\right)+\left(x+z\right)\left(x+y\right)\)
\(=\left(x+x\right)\left(x+x\right)+\left(x+x\right)\left(x+x\right)+\left(x+x\right)\left(x+x\right)\)
\(=2x\cdot2x+2x\cdot2x+2x\cdot2x\)
\(=4x^2+4x^2+4x^2=12x^2\)
Rõ rằng là bằng nhau rồi tức là điều trên cũng đúng hay ta có ĐPCM
\(P=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)=x+y+z\)
\(\Leftrightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+x+y+z=x+y+z\)
\(\Rightarrow Q=\frac{x^2}{y+z}+\frac{y^2}{x+y}+\frac{z^2}{x+y}=0\) (dpcm)
Bài này bạn phải chuyển 2xyz sang vế kia rồi nhóm hợp lí mới ra được.
(x^2.y +z^2.y -2xyz) -(y^2.x -y^2.z)+(x^2.z -x.z^2) =0
y(x^2 +z^2 -2xz)- y^2(x-z) +xz(x-z) =0
y(x-z)(x-z) -y^2(x-z)+xz(x-z)=0
(x-z)(xy-yz-y^2 +xz)=0
(x-z)(x-y)(y+z)=0
Nên x-z =0 hoặc x-y=0 hoặc y+z=0
Do đó: x=z hoặc x=y hoặc y=-z
Đặt \(x+y=a;y+z=b;z+x=c\)thì P=Q có nghĩa là:
\(a^2+b^2+c^2-ab-bc-ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)
\(\Leftrightarrow a=b=c\Leftrightarrow x+y=y+z=z+x\Leftrightarrow x=y=z\)