Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
a) x + 2x + 3x + ... + 100x = - 213
=> 100x + ( 2 + 3 + 4 + ... + 100 ) = - 213
=> 100x + 5049 = - 213
<=> 100x = - 5262
<=> x = - 52,62
#)Giải :
b) \(\frac{1}{2}x-\frac{1}{3}=\frac{1}{4}x-\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{3}+\frac{1}{6}\)
\(\Rightarrow\frac{1}{2}x+\frac{1}{4}x=\frac{1}{2}\)
\(\Rightarrow\left(\frac{1}{2}+\frac{1}{4}\right)x=\frac{1}{2}\)
\(\Rightarrow\frac{3}{4}x=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{2}{3}\)
Đặt \(Q\left(x\right)=P\left(x\right)-x^2-2\) (1)
\(\Rightarrow Q\left(1\right)=P\left(1\right)-1^2-2=3-3=0\)
\(Q\left(3\right)=P\left(3\right)-3^2-2=11-9-2=0\)
\(Q\left(5\right)=P\left(5\right)-5^2-2=27-25-2=0\)
\(\Rightarrow Q\left(x\right)=0\) có ít nhất 3 nghiệm \(x=1;x=3;x=5\)
Mà \(P\left(x\right)\) bậc 4 có hệ số \(x^4\) là 1 nên \(Q\left(x\right)\) bậc 4 và cũng có hệ số của \(x^4\) là 1
\(\Rightarrow Q\left(x\right)\) có dạng:
\(Q\left(x\right)=\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-k\right)\) với k là số thực nào đó
Thế vào (1)
\(\Rightarrow P\left(x\right)=Q\left(x\right)+x^2+2=\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-k\right)+x^2+2\)
\(\Rightarrow P\left(-2\right)=-105\left(-2-k\right)+6=316+105k\)
\(P\left(6\right)=15\left(6-k\right)+38=128-15k\)
\(\Rightarrow S=316+105k+7\left(128-15k\right)=1212\)
a) \(\frac{x+1}{3}=\frac{x-2}{4}\)
=> (x+1).4 = (x - 2) . 3
=> 4x + 4 = 3x - 6
=> 4x - 3x = - 6 - 4
=> x = - 10
b) \(\frac{x-6}{7}+\frac{x-7}{8}+\frac{x-8}{9}=\frac{x-9}{10}+\frac{x-10}{11}+\frac{x-11}{12}\)
\(\Rightarrow\left(\frac{x-6}{7}+1\right)+\left(\frac{x-7}{8}+1\right)+\left(\frac{x-8}{9}+1\right)=\left(\frac{x-9}{10}+1\right)+\left(\frac{x-10}{11}+1\right)+\left(\frac{x-11}{12}+1\right)\)
\(\Rightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}=\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}\)
\(\Rightarrow\frac{x+1}{7}+\frac{x+1}{8}+\frac{x+1}{9}-\frac{x+1}{10}-\frac{x+1}{11}-\frac{x+1}{12}\) = 0
\(\Rightarrow\left(x+1\right).\left(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\right)\)
Vì \(\frac{1}{7}+\frac{1}{8}+\frac{1}{9}-\frac{1}{10}-\frac{1}{11}-\frac{1}{12}\ne0\) nên x + 1 =0
=> x = -1
c) Xem lại đề
Lời giải:
Ta có thể viết dạng của $f(x)$ như sau:
\(f(x)=(x-1)(x-2)(x-3)(x-t)+g(x)\)
Trong đó, \(t\) là một số bất kỳ nào đó và \(g(x)\) là đa thức có bậc nhỏ hơn hoặc bằng $3$
Giả sử \(g(x)=mx^3+nx^2+px\)
\(\left\{\begin{matrix} f(1)=g(1)=m+n+p=10\\ f(2)=g(2)=8m+4n+2p=20\\ f(3)=g(3)=27m+9n+3p=30\end{matrix}\right.\)
Giải hệ trên thu được \(m=0,n=0,p=10\)
Như vậy \(f(x)=(x-1)(x-2)(x-3)(x-t)+10x\)
Do đó \(\left\{\begin{matrix} f(12)=990(12-t)+120=12000-990t\\ f(-8)=-990(-8-t)-80=7840+990t\end{matrix}\right.\)
\(\Rightarrow \frac{f(12)+f(-8)}{10}+26=\frac{12000+7840}{10}+26=2010\) (đpcm)
\(\text{a, 3(x+1)+4x=10}\)
\(\Rightarrow3x+3+4x=10\)
\(\Rightarrow7x+3=10\)
\(\Rightarrow7x=10-3=7\)
\(\Rightarrow x=1\)
c, x+1/10+x+2/9=x+3/8+x+4/7
=> (x+1/10 +1) +(x+2/9 +1)= ( x+3/8 +1) +(x+4/7 +1)
=> x+11/10 + x+11/9 = x+11/8 + x+11/7
...............
a) \(3\left(x+1\right)+4x=10\)
\(\Rightarrow3x+3+4x=10\)
\(\Rightarrow3x+4x=10-3\)
\(\Rightarrow7x=7\)
\(\Rightarrow x=7\)
1.
a) \(\frac{-7}{9}.2\frac{3}{4}=\frac{-7}{9}.\frac{11}{4}=\frac{-77}{36}\)
b) \(\frac{2}{3}+\frac{1}{3}.\frac{-2}{5}=\frac{2}{3}+\frac{-2}{15}=\frac{8}{15}\)
c) \(\frac{3}{4}.15\frac{1}{3}-\frac{3}{4}.43\frac{1}{3}=\frac{3}{4}.\frac{46}{3}-\frac{3}{4}.\frac{130}{3}=\frac{23}{2}-\frac{65}{2}=-21\)
d) \(\left(-49,1\right).\frac{13}{27}-58,9.\frac{13}{27}=\frac{13}{27}.\left(-49,1-58,9\right)=\frac{13}{27}.\left(-108\right)=-52\)
e) \(0,375:\left(-4,5\right)=\frac{-1}{12}\)
f) \(3\frac{1}{7}:\left(-1\frac{3}{7}\right)=\frac{22}{7}:\frac{-10}{7}=\frac{-11}{5}\)
g) \(9\frac{1}{3}:4\frac{2}{3}-2=\frac{28}{3}:\frac{14}{3}-2=2-2=0\)
h) \(\left(7\frac{3}{4}:0,3125+4,5.2\frac{2}{45}\right):\left(-8,5\right)=\left(\frac{31}{4}:\frac{5}{16}+\frac{9}{2}.\frac{92}{45}\right):\frac{-17}{2}=\left(\frac{124}{5}+\frac{46}{5}\right):\frac{-17}{2}=34:\frac{-17}{2}=-4\)
Bài 1 : Tính:
a)
\(\frac{-7}{9}.2\frac{3}{4}=\frac{-7}{9}.\frac{11}{4}=\frac{-77}{36}\)
b)
\(\frac{2}{3}+\frac{1}{3}.\frac{-2}{5}=\frac{2}{3}+\frac{-2}{15}=\frac{10}{15}+\frac{-2}{15}=\frac{8}{15}\)
c)
\(\frac{3}{4}.15\frac{1}{3}-\frac{3}{4}.43\frac{1}{3}=\frac{3}{4}.\frac{46}{3}-\frac{3}{4}.\frac{130}{3}\)\(=\frac{23}{2}-\frac{65}{2}=\frac{-42}{2}=-21\)
....
Tự lm tiếp dạng như v
Bài 2 :
\(A=\frac{-6}{11}.\frac{7}{10}.\frac{11}{-6}.-20=\left(\frac{-6}{11}.\frac{11}{-6}\right).\left(\frac{7}{10}.-20\right)\)\(=1.\left(-14\right)=-14\)
.....
Bài 3 :
\(\frac{3}{7}.x-\frac{2}{5}.x=\frac{-17}{35}\)
\(\Leftrightarrow\frac{3}{7}-\frac{2}{5}.x=\frac{-17}{35}\)
\(\Leftrightarrow\frac{1}{35}x=\frac{-17}{35}\)
\(\Leftrightarrow x=\frac{-17}{35}:\frac{1}{35}\)
\(\Leftrightarrow x=\frac{-17}{35}.35=-17\)
\(P\left(x\right)=x^4+ax^3+bx^2+cx+d\)
Đặt \(Q\left(x\right)=P\left(x\right)-10x\) \(\Rightarrow\left\{{}\begin{matrix}Q\left(1\right)=P\left(1\right)-10.1=10-10=0\\Q\left(2\right)=P\left(2\right)-10.2=20-20=0\\Q\left(3\right)=P\left(3\right)-10.3=30-30=0\end{matrix}\right.\)
\(\Rightarrow Q\left(x\right)\) có 3 nghiệm \(x=\left\{1;2;3\right\}\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)\)
Mà \(Q\left(x\right)=P\left(x\right)-10x\Rightarrow P\left(x\right)=Q\left(x\right)+10x\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-a\right)+10x\)
\(P\left(12\right)=990\left(12-a\right)+120=12000-990a\)
\(P\left(-8\right)=-990\left(-8-a\right)-80=990a+7840\)
\(\Rightarrow\frac{P\left(12\right)+P\left(-8\right)}{10}=\frac{12000-990a+990a+7840}{10}=1984\)