K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2016

\(P\left(x\right)=-4x^4+3x^3+4x^2+3x+6\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=-x^5-2x^4+x^3+7x^2+2x+\frac{25}{4}\)

\(P\left(x\right)-Q\left(x\right)=x^5-6x^4+5x^3+x^2+4x+\frac{23}{4}\)

15 tháng 5 2016

P(x) = -4x^4 + (5x^3 - 2x^3) + 4x^2 + 3x + 6

       = -4x^4 + 3x^3 + 4x^2 + 3x + 6

Q(x) = -x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4

P(x) + Q(x) = (-4x^4 + 3x^3 + 4x^2 + 3x + 6) + (-x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4)

                   = -4x^4 + 3x^3 + 4x^2 + 3x + 6 - x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4

                   = -x^5 - (4x^4 - 2x^4) + (3x^3 - 2x^3) + (4x^2 + 3x^2) + (3x - x) + (6 + 1/4)

                   = -x^5 - 2x^4 + x^3 + 7x^2 + 2x + 25/4

P(x) - Q(x) = (-4x^4 + 3x^3 + 4x^2 + 3x + 6) - (-x^5 + 2x^4 - 2x^3 + 3x^2 - x + 1/4)

                  = -4x^4 + 3x^3 + 4x^2 + 3x + 6 + x^5 - 2x^4 + 2x^3 - 3x^2 + x - 1/4

                  = x^5 - (4x^4 + 2x^4) + (3x^3 + 2x^3) + (4x^2 - 3x^2) + (3x + x) + (6 - 1/4)

                  = x^5 - 6x^4 + 5x^3 + x^2 + 4x + 23/4

Chúc bạn học tốtok

27 tháng 4 2017

a/ P(x) = x - 2\(x^2+3x^{^{ }5}+x^4+x-1\)

= \(3x^5+x^4-2x^{^{ }2}+\left(x+x\right)-1\)

= 3\(x^{^{ }5}+x^4-2x^2+2x-1\)

Q(x) = \(-3x^5+3x^{^{ }4}+2x^2-2x+3\)

b/ P(x) = 3\(x^5+x^4-2x^{^{ }2}+2x-1\)

Q(x) = -3\(x^5+3x^4+2x^2-2x+3\)

P(x) +Q(x) = 4\(x^4+2\)

P(x) - Q(x) = 6x\(^5\)-2x\(^4\) - 4x\(^2\) + 4x - 4

18 tháng 7 2018

a)P(x)=3x5-4x4-2x3+4x2+5x+6

Q(x)=-x5+2x4-2x3+3x2-x+1/4

b)+\(\dfrac{P\left(x\right)=3x^{5^{ }}-4x^4-2x^3+4x^2+5x+6}{Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\dfrac{1}{4}}\)

=2x5-2x4-4x3+7x2+4x+\(\dfrac{25}{4}\)

c)sắp xếp tương tự nhưng đổi dấu cộng thành dấu trừ ở phía trước

=4x5-6x4+x2+6x+\(\dfrac{23}{4}\)

d)3xQ(x)=3x6+6x5-6x4+9x3-3x2+\(\dfrac{3}{4}x\)

\(\dfrac{P\left(x\right)=3x^5-4x^4-2x^3+4x^2+5x+6}{3xQ\left(x\right)=-3x^6-6x^5-6x^4+9x^3-3x^2+\dfrac{3}{4}x}\)

=\(3x^6-3x^5+2x^4-7x^3+7x^2+\dfrac{17}{4}x+6\)

7 tháng 6 2020

\(P\left(x\right)=3x^5+x^4-2x^2+2x-1\)

\(Q\left(x\right)=-3x^5+2x^2-2x+3\)

\(P\left(x\right)+Q\left(x\right)=3x^5+x^4-2x^2+2x-1-3x^5+2x^2-2x+3\)

\(=x^4+2\)

\(P\left(x\right)-Q\left(x\right)=3x^5+x^4-2x^2+2x-1+3x^5-2x^2+2x-3\)

\(=6x^5+x^4-4x^2+4x-4\)

7 tháng 6 2020

Thu gọn + sắp xếp luôn

P(x) = 3x5 + x4 - 2x2 + 2x - 1

Q(x) = -3x5 + 2x2 - 2x + 3

P(x) + Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) + ( -3x5 + 2x2 - 2x + 3 )

                   = ( 3x5 - 3x5 ) + x4 + ( 2x2 -- 2x2 ) + ( 2x - 2x ) + ( 3 - 1 )

                   = x4 + 2

P(x) - Q(x) = ( 3x5 + x4 - 2x2 + 2x - 1 ) - (  -3x5 + 2x2 - 2x + 3 )

                  = 3x5 + x4 - 2x2 + 2x - 1 + 3x5 - 2x2 + 2x - 3

                  = ( 3x5 + 3x5 ) + x4 + ( -2x2 - 2x2 ) + ( 2x + 2x ) + ( -1 - 3 )

                  = 6x5 + x4 - 4x2 + 4x - 4

23 tháng 6 2016

P(x)=x^5+3x^3+4x^2+2x-4

Q(x)=x^5-x^4-2^3+3x+4

P(x)+Q(x)=2x^5-x^4+x^3+4x^2+5x

23 tháng 6 2016

a, P(x)= x^5+3x^3+4x^2+4x-4

   Q(x)= x^5-x^4-2x^3+3x-4

b, P(x)+Q(x)= 2x^5-x^4+x^3+4x^2+x-8

5 tháng 5 2019

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+16\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

b

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+16\)

\(-\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=6x^5-6x^4+x^2+4x+\frac{63}{4}\)

c.

Thay x=-1 vào P(x) thấy đúng còn Q(x) thấy nó khác 0

d

\(P\left(x\right)-Q\left(x\right)=6\cdot\left(-1\right)^5-6\cdot\left(-1\right)^4+\left(-1\right)^2+4\left(-1\right)+\frac{63}{4}\)

\(=-6-6+1-4+\frac{63}{4}\)

Tự tính nốt

a,

\(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+16\)

\(Q\left(x\right)=-x^5+2x^4-2x^3+3x^2-x+\frac{1}{4}\)