K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2022

a: TH1: x>=1

Pt sẽ là x^2-2x-2(x-1)+m+3=0

=>x^2-2x-2x+2+m+3=0

=>x^2-4x+m+5=0

\(\text{Δ}=\left(-4\right)^2-4\left(m+5\right)=16-4m-20=-4m-4\)

Để PT có nghiệm thì -4m-4>=0

=>m<=-1

b: TH2: x<1

Pt sẽ là \(x^2-2x-2\left(1-x\right)+m+3=0\)

=>x^2-2x-2+2x+m+3=0

=>x^2+m+1=0

Để phương trình có nghiệm thì m+1<=0

=>m<=-1

30 tháng 11 2022

Bài 3:

a: Để pt có hai nghiệm trái dấu thì m+5<0

=>m<-5

b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)

\(=m^2+4m+4-4m-20=m^2-16\)

Để phương trình có hai nghiệm phân biệt thì m^2-16>0

=>m>4 hoặc m<-4

c: x1^2+x2^2=23

=>(x1+x2)^2-2x1x2=23

=>(m+2)^2-2(m+5)=23

=>m^2+4m+4-2m-10-23=0

=>m^2+2m-29=0

hay \(m=-1\pm\sqrt{30}\)

d: Để pt có hai nghiệm âm phân biệt thì

\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)

\(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-3m\right)\)

\(=4m^2-8m+4-4m^2+12m=4m+4\)

Để phương trình có nghiệm thì 4m+4>=0

hay m>=-1

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Lời giải:

Trước tiên để PT có 2 nghiệm phân biệt thì:

\(\Delta'=m^2-(m^2-2m+1)>0\Leftrightarrow 2m-1>0\Leftrightarrow m> \frac{1}{2}(*)\)

Theo định lý Vi-et, với $x_1,x_2$ là 2 nghiệm của phương trình thì:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2m+1=(m-1)^2\end{matrix}\right.\)

Để 2 nghiệm là nghiệm dương thì:

\(\left\{\begin{matrix} x_1+x_2=2m>0\\ x_1x_2=(m-1)^2>0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} m> 0\\ m\neq 1\end{matrix}\right.(**)\)

Từ \((*);(**)\Rightarrow m> \frac{1}{2}; m\neq 1\) là điều kiện để pt có 2 nghiệm dương phân biệt.

Bài 2: 

a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)

\(=16m^2+16m+4-16m-12=16m^2-8\)

Để phương trình có hai nghiệm thì \(2m^2>=1\)

=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)

c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)

\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)

\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)

\(=64m^3+96m^2+48m+8-48m^2-60m-18\)

\(=64m^3+48m^2-12m-10\)

4 tháng 7 2020

Để phương trình có 2 nghiệm phân biệt :

\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)

\(< =>4+4m>0\)

\(< =>4m>-4\)

\(< =>m>-1\)

NV
9 tháng 11 2019

Đặt \(x^2=t\ge0\Rightarrow\left(m-1\right)t^2+2t-3=0\) (1)

Với \(m=1\Rightarrow t=\frac{3}{2}\)

Với \(m\ne1\Rightarrow\Delta'=1+3\left(m-1\right)=3m-2\)

a/ \(m=1\) ko thỏa mãn

Để pt vô nghiệm \(\Rightarrow\Delta'< 0\Rightarrow m< \frac{2}{3}\) hoặc (1) có 2 nghiệm đều âm

\(\Rightarrow\left\{{}\begin{matrix}t_1+t_2=\frac{2}{1-m}< 0\\t_1t_2=\frac{3}{1-m}>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

Vậy \(m< \frac{2}{3}\)

b/ Để pt có đúng 1 nghiệm \(\Leftrightarrow\left(1\right)\) có đúng 1 nghiệm \(t=0\Rightarrow-3=0\) (vô lý)

Vậy ko tồn tại m thỏa mãn

c/ Để pt có 2 nghiệm pb \(\Rightarrow\left(1\right)\) có đúng 1 nghiệm dương

\(m=1\) thỏa mãn

Với \(m\ne1\):

TH1: \(\Delta'=0\Rightarrow m=\frac{2}{3}\Rightarrow t=\frac{1}{1-m}=3>0\) thỏa mãn

TH2: \(\left\{{}\begin{matrix}\Delta'>0\\t_1t_2< 0\end{matrix}\right.\) \(\Rightarrow\frac{3}{1-m}< 0\Rightarrow1-m< 0\Rightarrow m>1\)

Vậy: \(\left\{{}\begin{matrix}m=\frac{2}{3}\\m\ge1\end{matrix}\right.\)

NV
9 tháng 11 2019

d/ Để pt đã cho có 3 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 1 nghiệm bằng 0 và 1 nghiệm dương

\(\Rightarrow-3=0\) (vô lý)

Không tồn tại m thỏa mãn

e/ Để pt có 4 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}3m-2>0\\t_1+t_2>0\\t_1t_2>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>\frac{2}{3}\\\frac{2}{1-m}>0\\\frac{3}{1-m}>0\end{matrix}\right.\)

\(\Rightarrow\frac{2}{3}< m< 1\)