Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Để pt có hai nghiệm trái dấu thì m+5<0
=>m<-5
b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)
\(=m^2+4m+4-4m-20=m^2-16\)
Để phương trình có hai nghiệm phân biệt thì m^2-16>0
=>m>4 hoặc m<-4
c: x1^2+x2^2=23
=>(x1+x2)^2-2x1x2=23
=>(m+2)^2-2(m+5)=23
=>m^2+4m+4-2m-10-23=0
=>m^2+2m-29=0
hay \(m=-1\pm\sqrt{30}\)
d: Để pt có hai nghiệm âm phân biệt thì
\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)
\(\text{Δ}=\left(2m-2\right)^2-4\left(m^2-3m\right)\)
\(=4m^2-8m+4-4m^2+12m=4m+4\)
Để phương trình có nghiệm thì 4m+4>=0
hay m>=-1
Lời giải:
Trước tiên để PT có 2 nghiệm phân biệt thì:
\(\Delta'=m^2-(m^2-2m+1)>0\Leftrightarrow 2m-1>0\Leftrightarrow m> \frac{1}{2}(*)\)
Theo định lý Vi-et, với $x_1,x_2$ là 2 nghiệm của phương trình thì:
\(\left\{\begin{matrix}
x_1+x_2=2m\\
x_1x_2=m^2-2m+1=(m-1)^2\end{matrix}\right.\)
Để 2 nghiệm là nghiệm dương thì:
\(\left\{\begin{matrix} x_1+x_2=2m>0\\ x_1x_2=(m-1)^2>0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} m> 0\\ m\neq 1\end{matrix}\right.(**)\)
Từ \((*);(**)\Rightarrow m> \frac{1}{2}; m\neq 1\) là điều kiện để pt có 2 nghiệm dương phân biệt.
Bài 2:
a: \(\text{Δ}=\left(4m+2\right)^2-4\left(4m+3\right)\)
\(=16m^2+16m+4-16m-12=16m^2-8\)
Để phương trình có hai nghiệm thì \(2m^2>=1\)
=>\(\left[{}\begin{matrix}m>=\dfrac{1}{\sqrt{2}}\\m< =-\dfrac{1}{\sqrt{2}}\end{matrix}\right.\)
c: \(A=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)\)
\(=\left(4m+2\right)^3-3\cdot\left(4m+3\right)\left(4m+2\right)\)
\(=64m^3+96m^2+48m+8-3\left(16m^2+20m+6\right)\)
\(=64m^3+96m^2+48m+8-48m^2-60m-18\)
\(=64m^3+48m^2-12m-10\)
Để phương trình có 2 nghiệm phân biệt :
\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)
\(< =>4+4m>0\)
\(< =>4m>-4\)
\(< =>m>-1\)
Đặt \(x^2=t\ge0\Rightarrow\left(m-1\right)t^2+2t-3=0\) (1)
Với \(m=1\Rightarrow t=\frac{3}{2}\)
Với \(m\ne1\Rightarrow\Delta'=1+3\left(m-1\right)=3m-2\)
a/ \(m=1\) ko thỏa mãn
Để pt vô nghiệm \(\Rightarrow\Delta'< 0\Rightarrow m< \frac{2}{3}\) hoặc (1) có 2 nghiệm đều âm
\(\Rightarrow\left\{{}\begin{matrix}t_1+t_2=\frac{2}{1-m}< 0\\t_1t_2=\frac{3}{1-m}>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Vậy \(m< \frac{2}{3}\)
b/ Để pt có đúng 1 nghiệm \(\Leftrightarrow\left(1\right)\) có đúng 1 nghiệm \(t=0\Rightarrow-3=0\) (vô lý)
Vậy ko tồn tại m thỏa mãn
c/ Để pt có 2 nghiệm pb \(\Rightarrow\left(1\right)\) có đúng 1 nghiệm dương
\(m=1\) thỏa mãn
Với \(m\ne1\):
TH1: \(\Delta'=0\Rightarrow m=\frac{2}{3}\Rightarrow t=\frac{1}{1-m}=3>0\) thỏa mãn
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\t_1t_2< 0\end{matrix}\right.\) \(\Rightarrow\frac{3}{1-m}< 0\Rightarrow1-m< 0\Rightarrow m>1\)
Vậy: \(\left\{{}\begin{matrix}m=\frac{2}{3}\\m\ge1\end{matrix}\right.\)
d/ Để pt đã cho có 3 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 1 nghiệm bằng 0 và 1 nghiệm dương
\(\Rightarrow-3=0\) (vô lý)
Không tồn tại m thỏa mãn
e/ Để pt có 4 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}3m-2>0\\t_1+t_2>0\\t_1t_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>\frac{2}{3}\\\frac{2}{1-m}>0\\\frac{3}{1-m}>0\end{matrix}\right.\)
\(\Rightarrow\frac{2}{3}< m< 1\)
a: TH1: x>=1
Pt sẽ là x^2-2x-2(x-1)+m+3=0
=>x^2-2x-2x+2+m+3=0
=>x^2-4x+m+5=0
\(\text{Δ}=\left(-4\right)^2-4\left(m+5\right)=16-4m-20=-4m-4\)
Để PT có nghiệm thì -4m-4>=0
=>m<=-1
b: TH2: x<1
Pt sẽ là \(x^2-2x-2\left(1-x\right)+m+3=0\)
=>x^2-2x-2+2x+m+3=0
=>x^2+m+1=0
Để phương trình có nghiệm thì m+1<=0
=>m<=-1