Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\Leftrightarrow\left(x-1\right)\left(x^2-2mx+m+12\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-2mx+m+12=0\left(1\right)\end{matrix}\right.\)
Để pt đã cho có 3 nghiệm pb thì (1) có 2 nghiệm pb khác 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=m^2-m-12>0\\13-m\ne0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m>4\\m< -3\end{matrix}\right.\\m\ne13\end{matrix}\right.\)
b/ \(\Leftrightarrow\left(x-m\right)\left(x^2-mx+m^2-1\right)=0\)
Sau đó làm tương tự câu a
c/ Bạn coi lại đề, câu này ko cô lập được nghiệm nào cả, nên ko giải theo kiểu lớp 10 được
A. \(x^2-2mx+m^2-2m+1=0\)
Ta có: Δ = \(b^2-4ac\)
= \(\left(-2m\right)^2-4.\left(m^2-2m+1\right)\)
= \(4m^2-4m^2+8m-4\)
= 8m - 4
+Nếu Δ > 0
⇔ 8m - 4 > 0
⇔ m > \(\dfrac{1}{2}\)
Phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2m+\sqrt{8m-4}}{2}=m+\sqrt{2m-1}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2m-\sqrt{8m-4}}{2}=m-\sqrt{2m-1}\)
+Nếu Δ =0
⇔ 8m - 4 = 0
⇔ m = \(\dfrac{1}{2}\)
phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{2m}{2}=m\) = \(\dfrac{1}{2}\)
+Nếu Δ < 0
⇔ 8m - 4 < 0
⇔ m< \(\dfrac{1}{2}\)
Phương trình vô nghiệm
B. \(x^2+\left(m-1\right)x-2m^2+m=0\)
Ta có: Δ = \(b^2-4ac\)
= \(\left(m-1\right)^2-4\left(-2m^2+m\right)\)
= \(m^2-2m+1+8m^2-4m\)
= \(9m^2-6m+1\)
+Nếu Δ > 0
⇔ \(9m^2-6m+1\) > 0
⇔ m ≠ \(\dfrac{1}{3}\)
Phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-m+1+\sqrt{9m^2-6m+1}}{2}\)
\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-m+1-\sqrt{9m^2-6m+1}}{2}\)
+Nếu Δ = 0
⇔ \(9m^2-6m+1=0\)
⇔ m = \(\dfrac{1}{3}\)
Phương trình có nghiệm kép:
\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{-\left(m-1\right)}{2}=\dfrac{-\left(\dfrac{1}{3}-1\right)}{2}=\dfrac{1}{3}\)
+Nếu Δ < 0
⇔ \(9m^2-6m+1< 0\)
⇔ m ∈ ∅
a: TH1: x>=1
Pt sẽ là x^2-2x-2(x-1)+m+3=0
=>x^2-2x-2x+2+m+3=0
=>x^2-4x+m+5=0
\(\text{Δ}=\left(-4\right)^2-4\left(m+5\right)=16-4m-20=-4m-4\)
Để PT có nghiệm thì -4m-4>=0
=>m<=-1
b: TH2: x<1
Pt sẽ là \(x^2-2x-2\left(1-x\right)+m+3=0\)
=>x^2-2x-2+2x+m+3=0
=>x^2+m+1=0
Để phương trình có nghiệm thì m+1<=0
=>m<=-1
a:Đặt x^2=a
PT ban đầu sẽ là a^2-2a-3m+1=0(1)
Để pt ban đầu có 4 nghiệm phân biệt thì pt (1) có hai nghiệm cùng dương
=>\(\left\{{}\begin{matrix}\left(-2\right)^2-4\cdot1\cdot\left(-3m+1\right)>0\\\dfrac{2}{1}>0\\\dfrac{-3m+1}{1}>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4+12m-4>0\\-3m+1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>0\\m< \dfrac{1}{3}\end{matrix}\right.\)
b: Để pt có 3 nghiệm thì (1) có một nghiệm dương và một nghiệm bằng 0
=>-3m+1=0
=>m=1/3
giải như pt bậc hai thoy bạn chủ yếu phần xđ hệ số a,b,c rồi giải nếu có nghiệm thì cho đenta≥0
Lời giải:
Trước tiên để PT có 2 nghiệm phân biệt thì:
\(\Delta'=m^2-(m^2-2m+1)>0\Leftrightarrow 2m-1>0\Leftrightarrow m> \frac{1}{2}(*)\)
Theo định lý Vi-et, với $x_1,x_2$ là 2 nghiệm của phương trình thì:
\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m^2-2m+1=(m-1)^2\end{matrix}\right.\)
Để 2 nghiệm là nghiệm dương thì:
\(\left\{\begin{matrix} x_1+x_2=2m>0\\ x_1x_2=(m-1)^2>0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} m> 0\\ m\neq 1\end{matrix}\right.(**)\)
Từ \((*);(**)\Rightarrow m> \frac{1}{2}; m\neq 1\) là điều kiện để pt có 2 nghiệm dương phân biệt.