Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(x^2-2\left(m+2\right)x+2m+1=0\)
\(\text{Δ}=\left(2m+4\right)^2-4\left(2m+1\right)\)
\(=4m^2+16m+16-8m-4\)
\(=4m^2+8m+12>0\)
=>PT luôn có hai nghiệm phân biệt
KHi m=-3 thì Pt sẽ là \(x^2+2x-5=0\)
hay \(x\in\left\{-1+\sqrt{6};-1-\sqrt{6}\right\}\)
b: Ta có: \(x_1^2+x_2^2=9+3x_1x_2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=9+3x_1x_2\)
\(\Leftrightarrow\left(2m+4\right)^2-2\left(2m+1\right)=9+3\cdot\left(2m+1\right)\)
\(\Leftrightarrow4m^2+16m+16-4m-2-9-6m-3=0\)
\(\Leftrightarrow4m^2+6m+2=0\)
hay \(m\in\left\{-\dfrac{1}{2};-1\right\}\)
1) \(x^2-2mx+m-2=0\) (1)
pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\)
=> pt luôn có 2 nghiệm phân biệt x1, x2
Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)
\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)
xin 1slot sáng giải
câu 1) ta có x2-2(m+2)x +2m2+7=0
ĐK để pt trên có nghiệm: Δ' ≥ 0
⇔ (m + 2)2 -2m2 -7 ≥ 0 ⇔ \(1\le m\le3\)
pt trên có 1 nghiệm x = 5 nên thế x = 5 vào pt ta có:
m2 -5m +6 =0 ⇔ \(\left[{}\begin{matrix}m=2\left(n\right)\\m=3\left(n\right)\end{matrix}\right.\)
với m = 2 thế vào pt ta có: x2 -8x +15 =0 ⇔ \(\left[{}\begin{matrix}x=5\\x=3\end{matrix}\right.\)
với m = 3 thế vào pt ta có: x2 -10x + 25 =0 ⇔ pt nghiệm kép x = 5
câu 2) đề hơi sai tí nhé bạn, mình làm theo yêu cầu luôn!
x2 -2(m+1)x+m-a=0
ĐK để pt có nghiệm: Δ' ≥ 0
⇔ (m+1)2 - m +a ≥ 0 ⇔ m2 + m +1+ a ≥ 0
Gọi x1; x2 lần lượt là 2 nghiệm của pt trên, theo hệ thức Vi-et ta có
x1 + x2 = 2m+2 và x1x2 = m - a
A = x1 + x2 -2x1x2 = 2m+2 - 2.(m - a) = 2+2a
Để phương trình có 2 nghiệm phân biệt :
\(\Delta>0< =>\left(-2\right)^2-4\left(-m\right)>0\)
\(< =>4+4m>0\)
\(< =>4m>-4\)
\(< =>m>-1\)
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Có cách nào lm bài này bằng cách lập bảng biến thiên k ạ
a: Vì a=-1<0 nên hàm số nghịch biến trên khoảng (2;+∞) và đồng biến trên khoảng (-∞;2]
Bảng biến thiên là:
x | -∞ | 2 | +∞ |
y | -∞ | 1 | -∞ |
Viet: \(x_1+x_2=1\)
Mà \(x_1-x_2=7\Leftrightarrow\left\{{}\begin{matrix}x_1=-3\\x_2=-4\end{matrix}\right.\)
Vậy ...