K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Δ=(2m-2)^2-4(m+1)

=4m^2-8m+4-4m-4

=4m^2-12m

Để phương trình co hai nghiệm thì 4m^2-12m>0

=>m>3 hoặc m<0

x1/x2+x2/x1=4

=>x1^2+x2^2=4x1x2

=>(x1+x2)^2-2x1x2=4x1x2

=>(2m-2)^2-6(m+1)=0

=>4m^2-8m+4-6m-6=0

=>4m^2-14m-2=0

=>\(m=\dfrac{7\pm\sqrt{57}}{2}\)

Δ=(2m+2)^2-4(-m-5)

=4m^2+8m+4+4m+20

=4m^2+12m+24

=4(m^2+3m+6)

=4(m^2+2*m*3/2+9/4+15/4)

=4(m+3/2)^2+15>=15

=>PT luôn có 2 nghiệm

(x1-x2)^2-x1(x1+3)-x2(x2+3)=-4

=>(x1+x2)^2-4x1x2-(x1+x2)^2+2x1x2-3(x1+x2)=-4

=>-2(-m-5)-3(2m+2)=-4

=>2m+10-6m-6=-4

=>-4m+4=-4

=>-4m=-8

=>m=2

Δ=(2m-2)^2-4(m^2-4)

=4m^2-8m+4-4m^2+16=-8m+20

Để phương trình có hai nghiệm phân biệt thì -8m+20>0

=>m<5/2

x1(x1-3)+x2(x2-3)=6

=>x1^2+x2^2-3(x1+x2)=6

=>(x1+x2)^2-2x1x2-3(x1+x2)=6

=>(2m-2)^2-3(2m-2)-2m^2+8=6

=>4m^2-8m+4-6m+6-2m^2+8=6

=>2m^2-14m+12=0

=>m^2-7m+6=0

=>m=1(nhận) hoặc m=6(loại)

NV
7 tháng 5 2023

Chắc đề là tìm m để pt có 2 nghiệm thỏa \(\left|x_1-x_2\right|=4\) chứ nhỉ?

1 tháng 4 2023

help me: tìm n biết 2^n + 3^n = 5^n với n E N

12 tháng 8 2021

b) phương trình có 2 nghiệm  \(\Leftrightarrow\Delta'\ge0\)

\(\Leftrightarrow\left(m-1\right)^2-\left(m-1\right)\left(m+3\right)\ge0\)

\(\Leftrightarrow m^2-2m+1-m^2-3m+m+3\ge0\)

\(\Leftrightarrow-4m+4\ge0\)

\(\Leftrightarrow m\le1\)

Ta có: \(x_1^2+x_1x_2+x_2^2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)

Theo viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\left(m-1\right)\\x_1x_2=\dfrac{c}{a}=m+3\end{matrix}\right.\)

\(\Leftrightarrow\left[-2\left(m-1\right)^2\right]-2\left(m+3\right)=1\)

\(\Leftrightarrow4m^2-8m+4-2m-6-1=0\)

\(\Leftrightarrow4m^2-10m-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m_1=\dfrac{5+\sqrt{37}}{4}\left(ktm\right)\\m_2=\dfrac{5-\sqrt{37}}{4}\left(tm\right)\end{matrix}\right.\Rightarrow m=\dfrac{5-\sqrt{37}}{4}\)

 

20 tháng 1 2023

\(x^2+3x+m-1=0\left(1\right)\)

Thay \(m=3\) vào \(\left(1\right)\)

\(\Rightarrow x^2+3x+3-1=0\)

\(\Rightarrow x^2+3x+2=0\)

\(\Rightarrow x^2+x+2x+2=0\)

\(\Rightarrow x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)

Vậy \(S=\left\{-2;-1\right\}\) khi \(m=3\)

20 tháng 1 2023

câu a) dễ rồi ai chả bt làm, Mik cần câu b)

 

8 tháng 6 2017

Để phương trình đã cho có 2 nghiệm buộc:

\(\Delta\)'\(\ge0\)

\(\Leftrightarrow\left(-m\right)^2+m+3=0\\ \Leftrightarrow\left(m-\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\veebar m\)

Do đó với mọi m thì phương trình đã cho có 2 nghiệm

Theo hệ thức viet ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1.x_2=\dfrac{c}{a}=-m-3\end{matrix}\right.\)

Từ giả thuyết \(\left|x_1\right|=\left|x_2\right|\\ \Leftrightarrow x_1^2=x_2^2\\ \Leftrightarrow\left(x_1-x_2\right)\left(x_1+x_2\right)=0\\ \Leftrightarrow\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}.\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\sqrt{\left(2m\right)^2+4m+12}.2m=0\\ \Leftrightarrow m=0\)(vì căn của 4m^2+4m+12>0)