Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Với \(m=0\) phương trình trở thành:
\((x^2-2x-3)(x^2-2x+3)=0\Leftrightarrow (x-3)(x+1)(x^2-2x+3)=0\)
\(\Rightarrow\left[\begin{matrix}x-3=0\\x+1=0\\x^2-2x+3=0\end{matrix}\right.\) \(\Leftrightarrow \) \(\left[\begin{matrix}x=3\\x=-1\\\left(x-1\right)^2+2=0\left(vl\right)\end{matrix}\right.\)
Vậy \(x\in \left\{-1,3\right\}\)
b) Để PT có $4$ nghiệm phân biết thì phương trình \(x^2-2x+2m+3=0\) phải có hai nghiệm phân biệt khác \(-1\) và \(3\)
Tức là \(\left\{\begin{matrix} \Delta' =1-(2m+3)>0\\ 3^2-2.3+2m+3\neq 0\\ (-1)^2-2(-1)+2m+3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m<-1\\ m\neq -3\\ \end{matrix}\right.\)
c) Áp dụng định lý Viet cho PT \(x^2-2x+2m+3=0\) có nghiệm thỏa mãn:\(\left\{\begin{matrix}x_3+x_4=2\\x_3x_4=2m+3\end{matrix}\right.\)
Có \(A=x_1x_2x_3x_4=-3x_3x_4=-3(2m+3)\)
Ta có với mọi \(x_3,x_4\in\mathbb{R}\) thì đều có \(x_3x_4\leq \left(\frac{x_3+x_4}{2}\right)^2=1\)
\(\Rightarrow -3x_3x_4\geq -3\) (khi nhân với số âm thì đổi dấu)
\(\Rightarrow A_{\min }=-3\Leftrightarrow m=-1\)
Câu b với c không liên quan đến nhau phải không? Nếu không thì không tìm được min đâu.
Bài 1:
a: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
b: Theo đề, ta có: \(\left(2m\right)^2=2m-1+7=2m+6\)
\(\Leftrightarrow4m^2-2m-6=0\)
\(\Leftrightarrow4m^2-6m+4m-6=0\)
=>(4m-6)(m+1)=0
=>m=-1 hoặc m=3/2
Lời giải:
Ta thấy:
\(\Delta=(m-3)^2+4(2m+1)=m^2+2m+13=(m+1)^2+12>0, \forall m\in\mathbb{R}\)
Do đó PT luôn có 2 nghiệm phân biệt với mọi $m$
Áp đụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=3-m\\ x_1x_2=-2m-1\end{matrix}\right.\)
Khi đó:
\(A=4x_1^2-x_1^2x_2^2+4x_2^2+x_1x_2\)
\(=4(x_1^2+x_2^2+2x_1x_2)-(x_1x_2)^2-7x_1x_2\)
\(=4(x_1+x_2)^2-(x_1x_2)^2-7x_1x_2\)
\(=4(3-m)^2-(-2m-1)^2-7(-2m-1)\)
\(=42-14m\)
Bạn muốn chứng minh biểu thức A thế nào???
b: \(\text{Δ}=\left(-4\right)^2-4\cdot3\cdot\left(m+1\right)\)
\(=16-12m-12=-12m+4\)
Để pt có hai nghiệm thì -12m+4>=0
=>m<=1/3
Ta có: \(\left(x_1+x_2\right)^2-2x_1x_2=\dfrac{10}{9}\)
=>\(\left(\dfrac{4}{3}\right)^2-2\cdot\left(m+1\right)=\dfrac{10}{9}\)
=>2(m+1)=16/9-10/9=6/9
=>m+1=3/9
=>m=-2/3
a: Để phương trình có hai nghiệm trái dấu thì m+1<0
hay m<-1
a/ x3 - 5x2 +3x+1 = 0
<=> (x3 - x2) + ( - 4x2 + 4x) + ( - x + 1) = 0
<=> (x - 1)(x2 - 4x - 1) = 0
<=> x = 1 hoặc x = 2 + \(\sqrt{5}\)hoặc x = 2 - \(\sqrt{5}\)