K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

a) \(\Delta=\left(-2m\right)^2-4.1.\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2\ge0\)

Vậy phương trình đã cho luôn có nghiệm với mọi m

b) \(2\left(x_1^2+x_2^2\right)-5x_1x_2=27\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2-27=0\)

\(\Leftrightarrow2\left(x_1+x_2\right)^2-4x_1x_2-5x_1x_2-27=0\)

\(\Leftrightarrow2\left(2m\right)^2-9\left(2m-1\right)-27=0\)

\(\Leftrightarrow8m^2-18m-18=0\)\(\Rightarrow\)\(\left[{}\begin{matrix}m_1=3\\m_2=-\dfrac{3}{4}\end{matrix}\right.\)

Vậy khi \(m=3\) hoặc \(m=-\dfrac{3}{4}\) thì.....

Bài 1:

a: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)=4m^2-8m+4=\left(2m-2\right)^2>=0\)

Do đó: Phương trình luôn có nghiệm

b: Theo đề, ta có: \(\left(2m\right)^2=2m-1+7=2m+6\)

\(\Leftrightarrow4m^2-2m-6=0\)

\(\Leftrightarrow4m^2-6m+4m-6=0\)

=>(4m-6)(m+1)=0

=>m=-1 hoặc m=3/2

1 tháng 6 2017

chỗ \(x_2=1\)là dấu cộng hay trừ đấy

5 tháng 3 2022

a, \(\Delta'=1-\left(2m-5\right)=6-2m\)

để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)

b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)

\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm) 

5 tháng 3 2022

a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)

b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)

Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)

Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)

Vậy để [...] thì \(m=\frac{39}{14}\)

17 tháng 5 2018

Bạn tham khảo ở đường link dưới nhé

Câu hỏi của Châu Minh Khang - Toán lớp 9 - Học toán với OnlineMath

13 tháng 4 2018

a) Ta có \(\Delta'=m^2+1>0\forall m\) nên phương trình luôn có hai nghiệm phân biệt với mọi m

b) Theo Viet ta có:

\(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=-1\end{cases}}\)

Vậy nên \(x_1^2+x_2^2-x_1x_2=\left(x_1+x_2\right)^2-3x_1x_2=4m^2+3\)

Để \(x_1^2+x_2^2-x_1x_2=7\Rightarrow4m^2+3=7\Rightarrow\orbr{\begin{cases}m=1\\m=-1\end{cases}}\)

6 tháng 6 2018

b theo viet co 

x1+x2=2m

x1*x2=-1

x1^2+x2^2-x1*x2=7

(x1+x2)^2 -2x1*x2-x1-x2=7

4m^2+2+1=7

4m^2=4 m=+-1

26 tháng 4 2021

\(x^2-2mx+2m-3=0\)

\(\Delta^,_x=m^2-2m+3\)

\(=\left(m-1\right)^2+2\ge2>0;\forall m\)

\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)

Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)

Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)

\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)

\(\Leftrightarrow-8m+4=-4\)

\(\Leftrightarrow m=1\)

Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức  \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)