Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
Có: \(\Delta=(-2m)^2-4(m-1)=4m^2-4m+4=(2m-1)^2+3\)
Vì \((2m-1)^2\geq 0, \forall m\in\mathbb{R}\Rightarrow \Delta\geq 3>0, \forall m\in\mathbb{R}\)
Do đó pt luôn có hai nghiệm phân biệt .
b)
Áp dụng định lý Viete cho pt bậc 2: \(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m-1\end{matrix}\right.(*)\)
Vì \(\sqrt{x_1}; \sqrt{x_2}\) xác định nên \(\left\{\begin{matrix} x_1+x_2=2m\geq 0\\ x_1x_2=m-1\geq 0\end{matrix}\right.\Leftrightarrow m\geq 1\)
Khi đó, dựa vào $(*)$: \(\sqrt{x_1}+\sqrt{x_2}=2\)
\(\Rightarrow x_1+x_2+2\sqrt{x_1x_2}=4\) (bình phương hai vế)
\(\Rightarrow 2m+2\sqrt{m-1}=4\)
\(\Leftrightarrow m+\sqrt{m-1}=2\)
\(\Leftrightarrow \sqrt{m-1}=2-m\) \((\rightarrow m\leq 2)\)
\(\Rightarrow m-1=(2-m)^2\) (bình phương hai vế)
\(\Leftrightarrow m^2-5m+5=0\)
\(\Leftrightarrow \left[\begin{matrix} m=\frac{5+\sqrt{5}}{2}(\text{không thỏa mãn do m}\leq 2)\\ m=\frac{5-\sqrt{5}}{2}(t/m)\end{matrix}\right.\)
Vậy \(m=\frac{5-\sqrt{5}}{2}\)
a) Tam thức bậc hai có \(\Delta'=m^2-m+4=m^2-2.\frac{1}{2}m+\frac{1}{4}-\frac{1}{4}+4=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\).
Suy ra phương trình (1) luôn có nghiệm với mọi m.
b) Theo Vi-et ta có:
\(x_1+x_2=2m,x_1.x_2=m-4\)
Điều kiển để \(x_1+x_2=\frac{x_1^2}{x_2}+\frac{x_2^2}{x_1}\)
\(\Leftrightarrow x_1+x_2=\frac{x_1^3+x_2^3}{x_1x_2}\)
\(\Leftrightarrow x_1+x_2=\frac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{x_1x_2}\)
\(\Leftrightarrow2m=\frac{\left(2m\right)^3-3\left(m-4\right).2m}{m-4}\)
\(\Leftrightarrow2m\left(m-4\right)=8m^3-6m^2+8m\) và \(m\ne4\)
\(\Leftrightarrow4m\left(2m^2-2m+3\right)=0\) và \(m\ne4\)
\(\Leftrightarrow m=0\)
\(\Delta'\) = (-m2)2 - m2 - 2 = m4 - m2 - 2
để pt có 2 nghiệm x1, x2 thì m4 - m2 - 2 \(\ge\) 0
=> (m2 - \(\dfrac{1}{2}\))2 - \(\dfrac{9}{4}\) \(\ge\) 0
\(\left\{{}\begin{matrix}m^2-\dfrac{1}{2}\le-\dfrac{3}{2}\\m^2-\dfrac{1}{2}\ge\dfrac{3}{2}\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m^2\le-1\left(loai\right)\\m^2\ge2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}m\ge\sqrt{2}\\m\le-\sqrt{2}\end{matrix}\right.\)
theo hệ thức Vi - ét : \(\left\{{}\begin{matrix}x_1+x_2=2m^2\\x_1.x_2=m^2+2\end{matrix}\right.\)
ta có : \(\dfrac{1}{\sqrt{2}}\)x1x2 = 3\(\sqrt{x_1+x_2}\) <=> \(\dfrac{1}{\sqrt{2}}\).(m2 + 2) - 3.\(\sqrt{2m^2}\) = 0
<=> \(\dfrac{\sqrt{2}.m^2}{2}\) + \(\sqrt{2}\) - \(3\sqrt{2}.m\) = 0
<=> m2 - 6m + 2 = 0
\(\Delta'\) = (-3)2 - 2 = 7 > 0 => pt có 2 nghiệm pb
m1 = \(\dfrac{3-\sqrt{7}}{1}\) = 3-\(\sqrt{7}\) ( loại )
m2 = 3+\(\sqrt{7}\) (TM )
vậy để pt có 2 nghiêm jthoar mãn đk trên thì m = 3+\(\sqrt{7}\)
\(\Delta^`\ge0\)
\(\Leftrightarrow m^2-\left(m^2-2\right).2\ge0\)
\(\Leftrightarrow4-m^2\ge0\)
\(\Leftrightarrow4\ge m^2\)
\(\Leftrightarrow4\ge m^2\)
\(\Leftrightarrow-2\le m\le2\)
Theo hệ thức Viet có:
\(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=\frac{m^2-2}{2}\end{cases}}\)
\(\Rightarrow A=\left|2x_1.x_2-x_1-x_2-4\right|=\left|m^2-m-6\right|=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|\)
Có:
\(\left(m-\frac{1}{2}\right)^2\le\left(-2-\frac{1}{2}\right)^2=6,25\)
\(\Rightarrow A=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|=6,25-\left(m-\frac{1}{2}\right)^2\le6,25\)
\(A=6,25\Leftrightarrow m=\frac{1}{2}\left(tm\right)\)
KL:..............................................
Ta có: \(a-b+c=1+2m-2m-1=0\)
Phương trình luôn có 2 nghiệm: \(\left\{{}\begin{matrix}x_1=-1\\x_2=2m+1\end{matrix}\right.\)
Để biểu thức bài toán xác định thì:
\(\left\{{}\begin{matrix}x_1+x_2=2m\ge0\\3+x_1x_2=2-2m\ge0\end{matrix}\right.\) \(\Rightarrow0\le m\le1\)
\(\sqrt{x_1+x_2}+\sqrt{3+x_1x_2}=2m+1\)
\(\Leftrightarrow\sqrt{2m}+\sqrt{2-2m}=2m+1\)
\(\Leftrightarrow2m-\sqrt{2m}+1-\sqrt{2-2m}=0\)
\(\Leftrightarrow\frac{4m^2-2m}{2m+\sqrt{2m}}+\frac{2m-1}{1+\sqrt{2-2m}}=0\)
\(\Leftrightarrow\left(2m-1\right)\left(\frac{2m}{2m+\sqrt{2m}}+\frac{1}{1+\sqrt{2-2m}}\right)=0\)
\(\Leftrightarrow2m-1=0\Rightarrow m=\frac{1}{2}\)
ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:
x1 + x2 = \(\dfrac{-b}{a}\) = 6
x1x2 = \(\dfrac{c}{a}\) = 1
a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )
=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)
=> A2 = 1(6 + 2) = 8
=> A = 2\(\sqrt{3}\)
b) bạn sai đề
\(\text{Δ}=\left(m+3\right)^2-4m^2\)
\(=m^2+6m+9-4m^2=-3m^2+6m+9\)
\(=-3\left(m^2-2m-3\right)=-3\left(m-3\right)\left(m+1\right)\)
Để phương trình có hai nghiệm phân biệt thì (m-3)(m+1)<0
=>-1<m<3
b:\(\Leftrightarrow x1+x2+2\sqrt{x_1x_2}=5\)
\(\Leftrightarrow m+3+2\sqrt{m^2}=5\)
=>2|m|=5-m-3=2-m
TH1: m>=0
=>2m=2-m
=>3m=2
=>m=2/3(nhận)
TH2: m<0
=>-2m=2-m
=>-2m+m=2
=>m=-2(loại)
c: P(x1)=P(x2)
=>\(x_1^3+a\cdot x_1^2+b=x_2^3+a\cdot x_2^2+b\)
=>\(\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)+a\left(x_1-x_2\right)\left(x_1+x_2\right)=0\)
=>(x1-x2)(x1^2+x1x2+x2^2+ax1+ax2)=0
=>x=0 và a=0
=>\(\left\{{}\begin{matrix}a=0\\b\in R\end{matrix}\right.\)
b) Để phương trình có nghiệm thì \(\Delta'=\left(-m\right)^2-\left(m-1\right)\ge0\Leftrightarrow m^2-m+1\ge0\)
Điều này hiển nhiên vì \(m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\forall m\)
Theo đề bài suy ra \(x_1+x_2+2\sqrt{x_1x_2}=4\) (bình phương hai vế của giả thiết)
Chị thay tiếp vô hệ thức Viet và em không chắc.
Xét \(\Delta^,=\left(-m\right)^2-\left(m-1\right)\)\(=m^2-m+1\)
\(=(m^2-2\cdot m\cdot\frac{1}{2}+\frac{1}{4})+\frac{3}{4}\)\(=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\)với mọi m
Theo Vi- ét :\(\hept{\begin{cases}x_1+x_2=2m\\x_1\cdot x_2=m-1\end{cases}}\)(1)
Theo bài ra ta có : \(\sqrt{x_1}+\sqrt{x_2}=2\)
\(\Leftrightarrow\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=4\)\(\Leftrightarrow x_1+2\sqrt{x_1\cdot x_2}+x_2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)+2\sqrt{x_1\cdot x_2}=4\)(*)
Thay (1) vào (*) ta được :
\(2m+2\sqrt{m-1}=4\)\(\Leftrightarrow2\sqrt{m-1}=4-2m\)
\(\Leftrightarrow\sqrt{m-1}=2-m\)\(\Leftrightarrow\sqrt{m-1}^2=\left(2-m\right)^2\)
\(\Leftrightarrow|m-1|=4-4m+m^2\)
\(\Leftrightarrow\orbr{\begin{cases}m-1=4-4m+m^2\\m-1=-4+4m-m^2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m^2-5m+5=0\left(2\right)\\m^2-3m+3=0\left(3\right)\end{cases}}\)
\(\Delta_{\left(2\right)}=\left(-5\right)^2-4\cdot5=5>0\)
=> Phương trình có 2 nghiệm phân biệt
\(m_1=\frac{5+\sqrt{5}}{2};m_2=\frac{5-\sqrt{5}}{2}\)
\(\Delta_{\left(3\right)}=\left(-3\right)^2-4\cdot3=-3< 0\)
=> phương trình vô nghiệm
KL : ....
kb vs mk nha