Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, bn chỉ cần thay m =-2 vào pt là đc
b, thay x=-2 vào pt tac đc 4+6m+m^2-3m=0
m^2+3m+4=0
m=-1 và m=-4
với m=-1 thì x=2 với m=-4 thì vo nghiệm
vậy nghiệm còn lại là 2
c bn sd đen ta ' là đc
d - bn viết hệ thức viet
x1^2+x2^2=8
(X1+x2)^2-2x1.x2=8
- thay viet vào
1) pt có 2 nghiệm pb <=> \(\Delta=16-4\left(-m^2\right)=16+4m^2>0\)=> pt luôn có 2 nghiệm phân biệt với mọi m
2) vì là giá trị tuyệt đối => A>=0 => Min A=0 <=> \(x1^2-x2^2=0\Leftrightarrow x1=x2\)
=> pt có 1 nghiệm kép. mà biết thức đenta luôn >0 => k tìm đc giá trị nhỏ nhất của A
a
Xét \(\Delta'=m^2-m+2=m^2-m+\frac{1}{4}+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\)
=> pt có 2 nghiệm phân biệt với mọi giá trị m
b
Do phương trình có 2 nghiệm phân biệt nên theo Viete ta có:\(x_1+x_2=2m;x_1x_2=-2\)
Khi đó:\(x_1^2+x_2^2-x_1^2x_2^2-1\)
\(=\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1x_2\right)^2-1\)
\(=4m^2+4-4-1=4m^2-1\ge-1\)
Dấu "=" xảy ra tại m=0
Vậy............................................................
Ta có: \(\Delta=\left(2m-1\right)^2+7>0\forall x\)
Nên pt (1) có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi-et ta có:
\(x_1+x_2=2m,x_1\cdot x_2=m-2\)
\(B=x_1^2+x_2^2-x_1^2\cdot x_2^2-1=\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1x_2\right)^2-1\)
Thay Vi-et và biến đổi ta có: \(B=\left(m+\frac{1}{3}\right)^2-\frac{4}{3}\ge\frac{-4}{3}\forall m\)
Xét dấu "=" xảy ra và kết luận
1.
\(\Delta'=\left(-m\right)^2-1.\left(2m-3\right)=m^2-2m+3>0\forall m\)
Với \(\Delta'>0\forall m\)thì phương trình có hai nghiệm là x1, x2 ,theo Vi - et ta có :
x1 + x2 = \(-\frac{-m}{1}=m\) ; x1x2 =\(\frac{2m-3}{1}=2m-3\)
Thay x1 + x2 = m; x1x2 = 2m - 3 vào bt A = x12 + x22 ta có :
A = x12 + x22 + 2x1x2 - 2x1x2
A = ( x1 + x2 + 2x1x2 ) - 2x1x2
A = ( x1 + x2 )2 - 2x1x2
A = m2 - 2.( 2m - 3 )
A = m2 - 4m + 6
\(\Delta'=\left(-2\right)^2-1.6=-2< 0\)
Vì \(\Delta'< 0\Rightarrow\) không có giá trị nào của m để bt A đạt giá trị nhỏ nhất