Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
a, \(\Delta'=1-\left(2m-5\right)=6-2m\)
để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)
b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)
Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)
\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm)
a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)
Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)
b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)
Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)
Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)
Vậy để [...] thì \(m=\frac{39}{14}\)
a, Để phương trình có 2 nghiệm phân biệt thì
\(\Delta=\left(2m-1\right)^2-4\left(m^2-1\right)>0\)
\(< =>4m^2-4m+1-4m^2+1>0\)
\(< =>2-4m>0\)\(< =>2>4m< =>m< \frac{2}{4}\)
b , bạn dùng vi ét là ra
Ta có : \(x^2-2\left(m-1\right)x+2m-5=0\left(a=1;b=-2m+2;c=2m-5\right)\)
a, Để pt có 2 nghiệm phân biệt thì \(\Delta>0\)hay
\(\left(-2m+2\right)^2-4\left(2m-5\right)=4m^2+4-8m+20=4m^2-8m+24>0\)
b, Theo hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=2m-5\)
Theo bài ra ta có : mk để \(x_1;x_2\)lần lượt là \(a;b\)nhé
\(\left(a^2-2ma-b+2m-3\right)\left(b^2-2mb-a+2m-3\right)=19\)
Do a;b là nghiệm nên a;b thỏa mãn pt đã cho nghĩa : \(\hept{\begin{cases}a^2-2\left(m-1\right)a+2m-5=0\\a^2-2\left(m-1\right)b+2m-5=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-2a+2\\-2b+2\end{cases}}\)Thay vào pt trên ta đc : \(\left(-2a+2\right)\left(-2b+2\right)=19\)
\(\Leftrightarrow4ab+2a^2-4a+2b^2+ab-2b-4b-2a+4=19\)
\(\Leftrightarrow2\left(a+b\right)^2-6\left(a+b\right)+ab=15\) Thay vào ta lại có pt mới :
\(2\left(2m-2\right)^2-6\left(2m-2\right)+2m-5=15\)
\(\Leftrightarrow2\left(4m-4\right)-12m+12+2m-5-15=0\)
\(\Leftrightarrow8m-8-12m+2m+12-5-15=0\)
\(\Leftrightarrow-2m-16=0\Leftrightarrow-2m=16\Leftrightarrow m=-8\)
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
\(\Delta=4^2-4\left(m+1\right)=16-4m-4=12-4m\)
Để phương trình có 2 nghiệm thì: \(\Delta\ge0\Leftrightarrow12-4m\ge0\Leftrightarrow m\le3\)
Với \(m\le3\), theo hệ thức Vi-ét ta có:
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=4\\x_1x_2=\frac{c}{a}=m+1\end{cases}}\)
\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=16-2\left(m+1\right)=14-2m\)
Vì \(x_1^3+x_2^3< 100\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)< 100\)
\(\Leftrightarrow4\left[14-2m-\left(m+1\right)\right]< 100\)
\(\Leftrightarrow14-2m-m-1< 25\)
\(\Leftrightarrow13-3m< 25\)
\(\Leftrightarrow-3m< 12\Leftrightarrow m>-4\)
Vậy \(-4< m\le3\)
nên các giá trị nguyên của m là -3;-2;-1;0;1;2;3
a, Để pt có nghiệm thì \(\Delta\ge0\)
Hay: \(\left(-3\right)^2-4\left(m-1\right)\ge0\)
\(\Leftrightarrow9-4m+4\ge0\)
\(\Leftrightarrow-4m\ge-13\)
\(\Leftrightarrow m\le\frac{13}{4}\)
b, Với \(m\le\frac{13}{4}\), theo Vi-ét, ta có: \(\hept{\begin{cases}x_1+x_2=3\\x_1x_2=m-1\end{cases}}\)
Ta có: \(x_1^2-x_2^2=15\)
\(\Leftrightarrow\left(x_1+x_2\right)\left(x_1-x_2\right)=15\)
\(\Leftrightarrow\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=15\)
\(\Leftrightarrow3\sqrt{3^2-4\left(m-1\right)}=15\)
\(\Leftrightarrow\sqrt{9-4m+4}=5\)
\(\Leftrightarrow\sqrt{13-4m}=5\)
\(\Leftrightarrow13-4m=25\)
\(\Leftrightarrow4m=-12\)
\(\Leftrightarrow m=-3\left(tm\right)\)
=.= hk tốt!!
Ta có : \(\Delta^'=\left[-\left(m+1\right)\right]^2-1.\left(m^2+2m\right)\)
\(\Delta^'=m^2+2m+1-m^2-2m\)
\(\Delta^'=1>0\)
=> phương trình luôn có hai nghiệm phân biệt
Theo hệ thức vi - ét ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\left(1\right)\\x_1x_2=m^2+2m\left(2\right)\end{cases}}\)
Theo bài ra ta có : \(x_1^3-x_2^3=8\)
\(\Rightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=8\left(3\right)\)
Thay \(\left(1\right)\)và \(\left(2\right)\)vào \(\left(3\right)\)
Ta được : \(\left(2m+2\right)^3-3.\left(m^2+2m\right).\left(2m+2\right)=8\)
\(\Rightarrow\left(2m\right)^3+3.4m^2.2+3.2m.4+8-6m^3-18m^2-12m=8\)
\(\Rightarrow2m^3+6m^2+12m=0\)
\(\Rightarrow2m.\left(m^2+3m+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2m=0\\m^2+3m+6=0\end{cases}}\)
\(\Leftrightarrow m=0\)
Vậy với m = 0 thì pt có 2 nghiện thõa mãn x13 - x23 = 8
Dùng lớp 8 giải
\(\Leftrightarrow x^2-2\left(m+1\right)x+\left(m+1\right)^2=1\) thêm 1 hai vế
\(\left[x-\left(m+1\right)\right]^2=1\)\(\Rightarrow x_1=m+2;x_2=m\)
\(x_1^3-x_2^3=8\)
Do x1, x2 tự đặt phải phân ra
TH1:(m+2)^3-m^3=8
TH2: m^3-(m+2)^3=8
\(TH1:\Leftrightarrow m^3=\left(m+2\right)^3-2^3=m^3+6m\left(m+2\right)\)
\(\Leftrightarrow6m\left(m+2\right)=0\Rightarrow m=0.hoac:;m=-2\)
\(TH2:-2^8-3m\left(m+2\right)=2^3\Leftrightarrow3m^2+6m+16=0\) vô nghiệm
=> đề thiếu dự kiện x1>x2