K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2019

ta có:

25 tháng 7 2015

câu 1:

Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)

có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)

\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)

câu 2 mk k bik lm nha 

 

17 tháng 5 2018

Bạn tham khảo ở đường link dưới nhé

Câu hỏi của Châu Minh Khang - Toán lớp 9 - Học toán với OnlineMath

10 tháng 6 2016

Theo hệ thức Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\left(m+2\right)\\x_1.x_2=m^2+m+3\end{cases}}\)

Viết lại : \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{\left(x_1+x_2\right)^2-2x_1.x_2}{x_1.x_2}=\frac{\left(x_1+x_2\right)^2}{x_1.x_2}-2=\frac{4\left(m+2\right)^2}{m^2+m+3}-2=4\)

\(\Leftrightarrow\frac{4\left(m+2\right)^2}{m^2+m+3}=6\Leftrightarrow4\left(m^2+4m+4\right)=6\left(m^2+m+3\right)\Leftrightarrow m^2-5m+1=0\Leftrightarrow m=\frac{5-\sqrt{21}}{2}\)hoặc \(m=\frac{5+\sqrt{21}}{2}\)

Vậy \(m\in\left\{\frac{5-\sqrt{21}}{2};\frac{5+\sqrt{21}}{2}\right\}\)

18 tháng 7 2018

a)Để \(PT\) có 2 nghiệm phân biệt khi \(\Delta'=\left(m-1\right)^2-\left(3-m\right)\)

\(=m^2-2m+1-3+m=m^2-m-2=\left(m-2\right)\left(m+1\right)>0\Leftrightarrow\orbr{\begin{cases}m< -1\\m>2\end{cases}}\)

Do đó để \(PT\)có 2 nghiệm phân biệt trái dấu khi \(\hept{\begin{cases}m\notin\left[-1;2\right]\\3-m< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}m\notin\left[-1;2\right]\left(1\right)\\m>3\left(TM\left(1\right)\right)\end{cases}}\)

Vậy \(m>3\) thì \(PT\) có 2 nghiệm trái dấu

b) Theo \(vi-et\: \) ta có :

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\left(2m-2\right)^2-2.\left(3-m\right)=4m^2-6m-2\)

Kết hợp với đề bài ta được : \(4m^2-6m-2\ge10\Leftrightarrow4m^2-6m-12\ge0\Leftrightarrow2m^2-3m-4\ge0\)

\(\Leftrightarrow\orbr{\begin{cases}x\le\frac{3-\sqrt{41}}{4}\\\frac{3+\sqrt{41}}{4}\le x\end{cases}}\)

a, \(x^2-2\left(m-1\right)x-3-m=0\left(a=1;b=-2m+2;c=-3-m\right)\)

Để phương trình có 2 nghiệm trái dấu thì \(ac< 0\)hay 

\(-3-m< 0\Leftrightarrow m< -3\)

b, Theo hệ thức Vi et ta có : \(x_1+x_2=2m-2;x_1x_2=-3-m\)(tđz) 

Theo bài ra ta có : \(x_1^2+x_2^2\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

Thay tđz bên trên vào ta đc : \(\left(2m-2\right)^2-2\left(-3-m\right)\ge10\)

\(\Leftrightarrow4m^2-4+6+2m\ge10\)

\(\Leftrightarrow4m^2+2+2m\ge10\Leftrightarrow3m^2-8+2m\ge0\)

Áp dụng HĐT đáng quên ra luôn =((