K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2021

b Có ∆’ = (m + 1)2 – m2 = 2m + 1

Để pt có 2 nghiệm phân biệt thì 2m + 1 > 0 ⇔ m > - 

Vì x = -2 là nghiệm của pt nên ta có 4 – 4(m + 1) + m2 = 0

⇔ m2 – 4m = 0 ⇔ m = 0 ; m = 4

Vậy với m = 0 ; m = 4 thì pt có 2 nghiệm phân biệt, trong đó có 1 nghiêm = -2

18 tháng 10 2020

a) Với m = 3 

Ta có: \(x^4-2.3.x^2+3^2-1=0\)

<=> \(\left(x^2-3\right)^2-1=0\Leftrightarrow\left(x^2-3-1\right)\left(x^2-3+1\right)=0\)

<=> \(\left(x^2-4\right)\left(x^2-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=\pm\sqrt{2}\end{cases}}\)

b) \(x^4-2mx^2+\left(m^2-1\right)=0\)(1)

Đặt: \(x^2=t\ge0\)

Ta có phương trình ẩn t: \(t^2-2mt+\left(m^2-1\right)=0\)(2)

(1) có 3 nghiệm phân biệt <=> (2) có 1 nghiệm t = 0 và 1 nghiệm t >0 

Với t = 0 thay vào (2) ta có: \(m^2-1=0\Leftrightarrow m=\pm1\)

+) Nếu m = 1; ta có: \(t^2-2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=3\end{cases}}\)tm 

+) Nếu m = - 1 ta có: \(t^2+2t=0\Leftrightarrow\orbr{\begin{cases}t=0\\t=-2\end{cases}}\)loại

Vậy m = 1

20 tháng 3 2018

a, bn chỉ cần thay m =-2 vào pt là đc

b, thay x=-2 vào pt tac đc 4+6m+m^2-3m=0

m^2+3m+4=0

m=-1 và m=-4

với m=-1 thì x=2   với m=-4 thì vo nghiệm

vậy nghiệm còn lại là 2

20 tháng 3 2018

c bn sd đen ta ' là đc

d - bn viết hệ thức viet 

x1^2+x2^2=8

(X1+x2)^2-2x1.x2=8

- thay viet vào

5 tháng 3 2022

a, \(\Delta'=1-\left(2m-5\right)=6-2m\)

để pt có nghiệm kép \(6-2m=0\Leftrightarrow m=3\)

b, để pt có 2 nghiệm pb \(6-2m>0\Leftrightarrow m< 3\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=2m-5\end{matrix}\right.\)

Ta có \(\left(x_1+x_2\right)^2-7x_1x_2=0\)

\(4-7\left(2m-5\right)=0\Leftrightarrow2m-5=\dfrac{4}{7}\Leftrightarrow m=\dfrac{39}{14}\)(tm) 

5 tháng 3 2022

a) Xét pt \(x^2-2x+2m-5=0\), có \(\Delta'=\left(-1\right)^2-\left(2m-5\right)=1-2m+5=6-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\)hay \(6-2m=0\)\(\Leftrightarrow m=3\)

b) Để pt có 2 nghiệm phân biệt thì \(\Delta'>0\)hay \(6-2m>0\)\(\Leftrightarrow m< 3\)

Khi đó, ta có \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2m-5\end{cases}}\)(hệ thức Vi-ét)

Từ đó \(x_1^2+x_2^2=5x_1x_2\)\(\Leftrightarrow\left(x_1+x_2\right)^2=7x_1x_2\)\(\Leftrightarrow2^2=7\left(2m-5\right)\)\(\Leftrightarrow4=14m-35\)\(\Leftrightarrow14m=39\)\(\Leftrightarrow m=\frac{39}{14}\)(nhận)

Vậy để [...] thì \(m=\frac{39}{14}\)