K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Thay m=1 vào pt, ta được:

\(x^2-1=0\)

=>(x-1)(x+1)=0

=>x=1 hoặc x=-1

b: \(\text{Δ}=\left(2m-2\right)^2-4\cdot\left(-m\right)\)

\(=4m^2-8m+4+4m\)

\(=4m^2-4m+4\)

\(=4\left(m^2-m+1\right)\)

\(=4m^2-4m+1+3=\left(2m-1\right)^2+3>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt

Ta có: \(2\left(x_1+x_2\right)-3x_1x_2+9=0\)

\(\Leftrightarrow2\cdot\left[-2\left(m-1\right)\right]-3\cdot\left(-m\right)+9=0\)

\(\Leftrightarrow-4\left(m-1\right)+3m+9=0\)

=>-4m+4+3m+9=0

=>13-m=0

hay m=13

6 tháng 2 2022

a, Thay m = 1 ta được 

\(x^2-1=0\Leftrightarrow x=1;x=-1\)

b, 

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=-m\end{matrix}\right.\)

\(-4\left(m-1\right)+3m+9=0\Leftrightarrow-m+13=0\Leftrightarrow m=13\)

12 tháng 7 2017

a) thay m=1 vào phương trình ta được phương trình:

\(x^2-2\left(1-1\right)x-2.1=0\\ \Leftrightarrow x^2-2x-2=0\\ \Delta=b^2-4ac=\left(-2\right)^2-4.1.\left(-2\right)=12\)

vậy phương trình có hai nghiệm phân biệt

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2+\sqrt{12}}{2}=1+\sqrt{3}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2-\sqrt{12}}{2}=1-\sqrt{3}\)

27 tháng 5 2019

a,\(\Delta\)' = (-m)2 - (m-1)(m+1) = m2 - m2 + 1 = 1

Vì 1>0 => phương trình có 2 nghiệm phân biệt

b,Theo a, phương trình luôn có 2 nghiệm phân biệt.Gọi x1;x2 là 2 nghiệm phương trình.Để tích 2 nghiệm = 5 ->x1x2=5->\(\frac{2m}{m-1}=5\)

->2m - 5(m-1)=>2m -5m +5 =0

->-3m + 5 = 0->m = \(\frac{5}{3}\)

Với m=\(\frac{5}{3}\)->(\(\frac{5}{3}-1)x^2-2.\frac{5}{3}x+\frac{5}{3}+1=0\)

->\(\frac{2}{3}x^2-\frac{10}{3}x+\frac{8}{3}=0\)

->x1=4 ; x2=1

5 tháng 6 2017

Bạn quy đồng cái đk cho trước lên,,rồi thay x1+x2 và x1.x2 vào,,,, OK???

9 tháng 7 2016

a) Xét : \(\Delta'=m^2-\left(m+2\right)=m^2-m-2\)

Theo định lí Vi-et , ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m+2\end{cases}}\)

Để phương trình có 2 nghiệm phân biệt không âm thì \(\hept{\begin{cases}x_1+x_2\ge0\\x_1.x_2\ge0\\\Delta'\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}2m\ge0\\m+2\ge0\\m^2-m-2\ge0\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}m\ge2\\m\le-1\end{cases}}\)

b) Nhận xét : P > 0

\(P^2=x_1+x_2+2\sqrt{x_1.x_2}=2m+2\sqrt{m+2}\Rightarrow P=\sqrt{2m+2\sqrt{m+2}}\) (vì P>0)

4 tháng 4 2019

/\(\sqrt{x}_1-\sqrt{x}_2\) /