Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Để pt có hai nghiệm trái dấu thì m+5<0
=>m<-5
b: \(\text{Δ}=\left(m+2\right)^2-4\left(m+5\right)\)
\(=m^2+4m+4-4m-20=m^2-16\)
Để phương trình có hai nghiệm phân biệt thì m^2-16>0
=>m>4 hoặc m<-4
c: x1^2+x2^2=23
=>(x1+x2)^2-2x1x2=23
=>(m+2)^2-2(m+5)=23
=>m^2+4m+4-2m-10-23=0
=>m^2+2m-29=0
hay \(m=-1\pm\sqrt{30}\)
d: Để pt có hai nghiệm âm phân biệt thì
\(\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\m+2< 0\\m+5>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in R\backslash\left[-4;4\right]\\-5< m< -2\end{matrix}\right.\Leftrightarrow m\in[-4;-2)\)
ĐKXĐ: \(x\ge0\)
\(\left(x^2-x-m\right)\sqrt{x}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-x-m=0\left(1\right)\end{matrix}\right.\)
Giả sử (1) có nghiệm thì theo Viet ta có \(x_1+x_2=1>0\Rightarrow\left(1\right)\) luôn có ít nhất 1 nghiệm dương nếu có nghiệm
Do đó:
a. Để pt có 1 nghiệm \(\Leftrightarrow\left(1\right)\) vô nghiệm
\(\Leftrightarrow\Delta=1+4m< 0\Leftrightarrow m< -\dfrac{1}{4}\)
b. Để pt có 2 nghiệm pb
TH1: (1) có 1 nghiệm dương và 1 nghiệm bằng 0
\(\Leftrightarrow m=0\)
TH2: (1) có 2 nghiệm trái dấu
\(\Leftrightarrow x_1x_2=-m< 0\Leftrightarrow m>0\)
\(\Rightarrow m\ge0\)
c. Để pt có 3 nghiệm pb \(\Leftrightarrow\) (1) có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1+4m>0\\x_1x_2=-m>0\\\end{matrix}\right.\) \(\Leftrightarrow-\dfrac{1}{4}< m< 0\)
Trường hợp 1: m=0
Phương trình sẽ là:
\(0x^2-2\cdot\left(0-1\right)x+0-3=0\)
=>2x-3=0
hay x=3/2
=>Phương trình có đúng một nghiệm dương, còn hai trường hợp còn lại thì ko đúng
Trường hợp 2: m<>0
a:
Để phương trình có hai nghiệm trái dấu thì m(m-3)<0
hay 0<m<3
b:\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)
\(=4m^2-8m+4-4m^2+12m\)
=4m+4
Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m>-1\\\dfrac{2\left(m-1\right)}{m}>0\\\dfrac{m-3}{m}>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1< m< 0\\m>3\end{matrix}\right.\)
Đặt \(x^2=t\ge0\Rightarrow\left(m-1\right)t^2+2t-3=0\) (1)
Với \(m=1\Rightarrow t=\frac{3}{2}\)
Với \(m\ne1\Rightarrow\Delta'=1+3\left(m-1\right)=3m-2\)
a/ \(m=1\) ko thỏa mãn
Để pt vô nghiệm \(\Rightarrow\Delta'< 0\Rightarrow m< \frac{2}{3}\) hoặc (1) có 2 nghiệm đều âm
\(\Rightarrow\left\{{}\begin{matrix}t_1+t_2=\frac{2}{1-m}< 0\\t_1t_2=\frac{3}{1-m}>0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Vậy \(m< \frac{2}{3}\)
b/ Để pt có đúng 1 nghiệm \(\Leftrightarrow\left(1\right)\) có đúng 1 nghiệm \(t=0\Rightarrow-3=0\) (vô lý)
Vậy ko tồn tại m thỏa mãn
c/ Để pt có 2 nghiệm pb \(\Rightarrow\left(1\right)\) có đúng 1 nghiệm dương
\(m=1\) thỏa mãn
Với \(m\ne1\):
TH1: \(\Delta'=0\Rightarrow m=\frac{2}{3}\Rightarrow t=\frac{1}{1-m}=3>0\) thỏa mãn
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\t_1t_2< 0\end{matrix}\right.\) \(\Rightarrow\frac{3}{1-m}< 0\Rightarrow1-m< 0\Rightarrow m>1\)
Vậy: \(\left\{{}\begin{matrix}m=\frac{2}{3}\\m\ge1\end{matrix}\right.\)
d/ Để pt đã cho có 3 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 1 nghiệm bằng 0 và 1 nghiệm dương
\(\Rightarrow-3=0\) (vô lý)
Không tồn tại m thỏa mãn
e/ Để pt có 4 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 2 nghiệm dương phân biệt
\(\Leftrightarrow\left\{{}\begin{matrix}3m-2>0\\t_1+t_2>0\\t_1t_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m>\frac{2}{3}\\\frac{2}{1-m}>0\\\frac{3}{1-m}>0\end{matrix}\right.\)
\(\Rightarrow\frac{2}{3}< m< 1\)
\(\text{Δ}=1^2-4\cdot2\cdot\left(1-3m\right)\)
=1-8(1-3m)
=1-8+24m=24m-7
1/2<m<5 thì 12<24m<60
=>5<24m-7<53
=>Chọn C
\(m\ne-1\) ; \(\Delta'=\left(m-3\right)^2-9\left(m+1\right)=m^2-15m\)
a/ Để pt có 2 nghiệm dương pb
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-15m>0\\\frac{2\left(m-3\right)}{m+1}>0\\\frac{9}{m+1}>0\end{matrix}\right.\) \(m>15\)
b/ Để pt có 2 nghiệm pb thỏa \(x_1< -1< x_2\)
\(\Leftrightarrow f\left(-1\right)< 0\)
\(\Leftrightarrow\left(m+1\right).1+2\left(m-3\right)+9< 0\)
\(\Leftrightarrow3m+4< 0\Rightarrow m< -\frac{4}{3}\)
c/ Để pt có 2 nghiệm pb thỏa \(x_1< x_2< 2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'>0\\\left(x_1-2\right)\left(x_2-2\right)>0\\\frac{x_1+x_2}{2}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-15m>0\\x_1x_2-2\left(x_1+x_2\right)+4>0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m^2-15m>0\\\frac{9}{m+1}+\frac{4\left(m-3\right)}{m+1}+4>0\\\frac{2\left(m-3\right)}{m+1}-4< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m^2-15m>0\\\frac{8m+1}{m+1}>0\\\frac{-2\left(m+5\right)}{m+1}< 0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m< -5\\-1< m< -\frac{1}{8}\\m>15\end{matrix}\right.\)
Bạn tự soát lại tính toán nhé