Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=\left(2m-3\right)^2\ge0;\forall m\)
Kết hợp Viet và điều kiện đề bài ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\frac{-2m+1}{2}\\x_1-x_2=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{-2m+7}{4}\\x_2=\frac{-2m-5}{4}\end{matrix}\right.\)
Mà \(x_1x_2=\frac{m-1}{2}\Rightarrow\left(\frac{-2m+7}{4}\right)\left(\frac{-2m-5}{4}\right)=\frac{m-1}{2}\)
\(\Leftrightarrow4m^2-12m-27=0\) (casio)
Để pt có 2 nghiệm đều dương \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{-2m+1}{2}>0\\x_1x_2=\frac{m-1}{2}>0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m< \frac{1}{2}\\m>1\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2m+1}{2}\\x_1x_2=\frac{m-1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=\frac{-2m+1}{2}\\2x_1x_2=\frac{2m-2}{2}\end{matrix}\right.\)
\(\Rightarrow x_1+x_2+2x_1x_2=-\frac{1}{2}\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
Lời giải:
1. Khi $a=2$ thì \(\left\{\begin{matrix} x-2y=1\\ 2x+y=2\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=1\\ y=0\end{matrix}\right.\)
2. HPT \(\Leftrightarrow \left\{\begin{matrix} x=1+ay\\ ax+y=2\end{matrix}\right.\Rightarrow a(1+ay)+y=2\)
\(\Leftrightarrow y(a^2+1)=2-a(*)\)
Vì $a^2+1\neq 0$ với mọi $a$ nên $(*)$ có nghiệm $y$ duy nhất. $y$ duy nhất dẫn đến $x$ duy nhất
Do đó HPT đã cho luôn có nghiệm $(x,y)$ duy nhất
3.
Ta có: \(y=\frac{2-a}{a^2+1}\Rightarrow x=1+ay=\frac{2a+1}{a^2+1}\)
Để hệ có nghiệm dương thì \(\left\{\begin{matrix} \frac{2-a}{a^2+1}>0\\ \frac{2a+1}{a^2+1}>0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} 2-a>0\\ 2a+1>0\end{matrix}\right.\Rightarrow 2> a>\frac{-1}{2}\)
A) delta=(4m-2)^2-4×4m^2
=16m^2-8m+4-16m^2
=-8m+4
để pt có hai nghiệm pb thì -8m+4>0
Hay m<1/2
B để ptvn thì -8m+4<0
hay m>1/2
\(\Delta=\left[2\left(m+1\right)\right]^2-4m^2=4m+1\)
a) để pt có 2 nghiệm phân biệt thì \(\Delta>0\Leftrightarrow4m+1>0\Leftrightarrow m>\frac{-1}{4}\)
b) thay x = -2 vào pt , ta được :
\(\left(-2\right)^2+2\left(m+1\right)\left(-2\right)+m^2=0\)
\(\Rightarrow m^2-4m=0\Rightarrow\orbr{\begin{cases}m=0\\m=4\end{cases}}\)
a) Phương trình có 2 nghiệm phân biệt:
<=> \(\Delta'=\left(m+1\right)^2-m^2>0\)
<=> m > -1/2
Vậy....
b) Phương trình có 2 nghiệm phân biệt trong đó có 1 nghiệm x = - 2
Thay x = -2 vào ta có: \(m^2-4\left(m+1\right)+4=0\)
<=> m = 0 (thỏa mãn )
hoặc m = 4 ( thỏa mãn)
Vậy ...