K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2020

Trên câu hỏi bn có ghi là tìm m để pt có gt max đâu mà mk biết ...

8 tháng 5 2020
https://i.imgur.com/0OXkeoX.jpg
NV
9 tháng 5 2020

\(\Delta'=m-1\ge0\Rightarrow m\ge1\)

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)

\(A=x_1x_2-\left(x_1+x_2\right)\)

\(=m^2-3m+1\)

Biểu thức này ko có max, chỉ có min, chắc bạn ghi ko đúng đề

9 tháng 5 2020

Uk đó là min

30 tháng 7 2019

Ta có:

\(\Delta'=b'^2-ac=m^2-\left(2m-1\right)=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\)

Vậy phương trình trên luôn có 2 nghiệm x1; x2 với mọi giá trị của m

Áp dụng Viet, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\frac{b}{a}=-2m\\x_1\cdot x_2=\frac{c}{a}=2m-1\end{matrix}\right.\)

Ta có:

\(A=x_1^2\cdot x_2+x_1\cdot x_2^2\\ =x_1x_2\left(x_1+x_2\right)\\ =\left(2m-1\right)\cdot\left(-2m\right)\\ =-4m^2+2m\\ =-\left[\left(2m\right)^2-2\cdot2m\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]+\frac{1}{4}\\ =-\left(2m-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall m\)

Vậy Max A = \(\frac{1}{4}\Leftrightarrow2m-\frac{1}{2}=0\Leftrightarrow m=\frac{1}{4}\left(tm\right)\)

Bài 2:

a: \(a=1;b=-2\left(m-2\right);c=-8\)

Vì ac<0 nên phương trình luôn có hai nghiệm trái dấu với mọi m

b: Theo Vi-et, ta được: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-2\right)=2m-4\\x_1x_2=-8\end{matrix}\right.\)

Ta có: \(x_1^3+x_2^3-4x_1-4x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-4\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(2m-4\right)^3-3\cdot\left(2m-4\right)\cdot\left(-8\right)-4\cdot\left(2m-4\right)=0\)

\(\Leftrightarrow\left(2m-4\right)\left[4m^2-16m+16+24-4\right]=0\)

\(\Leftrightarrow\left(2m-4\right)\left(4m^2-16m+36\right)=0\)

\(\Leftrightarrow2m-4=0\)

hay m=2

10 tháng 4 2018

a) ta có :

\(\Delta'\) = (-m)2 +1 = m2 + 1 \(\ge\) 1

=> pt luôn có 2 nghiệm phân biệt x1 , x2

b) theo hệ thức vi - ét thì : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=-1\end{matrix}\right.\)

ta có : x12 + x22 - x1x2 = 7

<=> x12 + 2x1x2 + x22 - 2x1x2 - x1x2 = 7

<=> ( x1 + x2 )2 - 3x1x2 = 7

<=> (2m)2 - 3.(-1) = 7

<=> 4m2 +3 = 7

<=> 4m2 = 4

<=> m2 = 1

<=> \(\left\{{}\begin{matrix}m=1\\m=-1\end{matrix}\right.\)

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ... 

19 tháng 2 2022

a, \(\Delta'=m^2-\left(m^2-4\right)=4>0\)

Vậy pt luôn có 2 nghiệm pb x1;x2 

Theo Vi et \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-4\end{cases}}\)

Ta có : \(2x_1-3x_2=-1\left(3\right)\)Từ (1) ;(3) ta có hệ 

\(\hept{\begin{cases}2x_1+2x_2=4m\\2x_1-3x_2=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}5x_2=4m+1\\x_1=2m-x_2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_2=\frac{4m+1}{5}\\x_1=\frac{10-4m-1}{5}=\frac{-4m+9}{5}\end{cases}}\)

Thay vào (2) ta được \(\frac{\left(4m+1\right)\left(-4m+9\right)}{25}=m^2-4\)

\(\Rightarrow-16m^2+36m-4m+9=25\left(m^2-4\right)\)

\(\Leftrightarrow41m^2-32m-109=0\)

bạn tự tính = delta' nhé, có gì sai bảo mình do số khá to và phức tạp á 

19 tháng 2 2022

b, Ta có \(\left|x_1\right|=\left|x_2\right|\)suy ra 

\(\left|\frac{4m+1}{5}\right|=\left|\frac{9-4m}{5}\right|\Rightarrow\left|4m+1\right|=\left|9-4m\right|\)

TH1 : \(4m+1=9-4m\Leftrightarrow8m=8\Leftrightarrow m=1\)

TH2 : \(4m+1=4m-9\left(voli\right)\)

NV
18 tháng 3 2021

\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)

\(P=x_1x_2-\left(x_1^2+x_2^2\right)=3x_1x_2-\left(x_1+x_2\right)^2\)

\(P=3\left(m-2\right)-m^2=-m^2+3m-6=-\left(m-\dfrac{3}{2}\right)^2-\dfrac{15}{4}\le-\dfrac{15}{4}\)

\(P_{max}=-\dfrac{15}{4}\) khi \(m=\dfrac{3}{2}\)

\(P_{min}\) ko tồn tại

Bạn ghi sai đề?

27 tháng 3 2021

\(Δ=(-m)^2-4.1.(m-2)\\=m^2-4m+8\\=m^2-4m+4+4\\=(m-2)^2+4\)

\(\to\) Pt luôn có 2 nghiệm phân biệt

Theo Viét

\(\begin{cases}x_1+x_2=m\\x_1x_2=m-2\end{cases}\)

\(x_1x_2-x_1^2-x_2^2\\=3x_1x_2-(x_1^2+2x_1x_2+x_2^2)\\=3x_1x_2-(x_1+x_2)^2\\=3(m-2)-m^2\\=-m^2+3m-6\\=-\bigg(m^2-2.\dfrac{3}{2}.m+\dfrac{9}{4}+\dfrac{15}{4}\bigg)\\=-\bigg(m-\dfrac{3}{2}\bigg)^2-\dfrac{15}{4}\le -\dfrac{15}{4}\\\to \max P=-\dfrac{15}{4}\leftrightarrow m-\dfrac{3}{2}=0\\\leftrightarrow m=\dfrac{3}{2}\)

Vậy \(\max P=-\dfrac{15}{4}\)

3 tháng 8 2017

Để phương trình có 2 nghiệm \(x_1;x_2\)thì \(\Delta'=\left(m+2\right)^2-m^2-7>0\Rightarrow m^2+4m+4-m^2-7>0\)

\(\Rightarrow4m-3>0\Rightarrow m>\frac{3}{4}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m+4\\x_1.x_2=m^2+7\end{cases}}\)

Yêu cầu bài toán \(\Leftrightarrow m^2+7=4+2\left(2m+4\right)\Leftrightarrow m^2-4m-5=0\)

\(\Leftrightarrow\left(m+1\right)\left(m-5\right)=0\Leftrightarrow\orbr{\begin{cases}m=-1\left(l\right)\\m=5\left(tm\right)\end{cases}}\)

Vậy \(m=5\)