K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 5 2021

Lời giải:

a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)

Khi đó:

\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

4 tháng 4 2016

quá dễ

4 tháng 4 2023

\(x^2-2\left(m-3\right)x+2m-8=0\left(1\right)\)

\(\Delta'=\left(m-3\right)^2-2m+8=m^2-8m+9+8=\left(m-4\right)^2+1>0\forall m\)

⇒ Phương trình hai nghiệm phân biệt

Theo viét : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-3\right)\\x_1x_2=2m-8\end{matrix}\right.\)

Có : \(x_1^2+x_2^2=52\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=52\)

\(\Leftrightarrow4\left(m-3\right)^2-2\left(2m-8\right)=52\)

\(\Leftrightarrow4m^2-24m+36-4m+16=52\)

\(\Leftrightarrow4m^2-28m=0\Leftrightarrow4m\left(m-7\right)=0\Leftrightarrow\left[{}\begin{matrix}m=0\\m=7\end{matrix}\right.\)

Vậy...

15 tháng 2 2019

Mobilegends nữa ko : (((((( 32k vàng rồi nha 

Bài này t có thể xài \(\Delta\)hay \(\Delta'\)đều được nhé vì bài này hệ số b chia hết cho 2 nên xài \(\Delta'\)đi cho nó easy hơn 1 tí >: 

Công thức: \(\Delta'=b'^2-ac\) chứ xài \(\Delta=b^2-4ac\) nó dài hơn tí 

\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(2m-4\right).1\)

\(\Delta'=m^2+2m+1-2m+4\)

\(\Delta'=m^2+5>0\) ( luôn đúng ) 

P/s câu a chỉ cần chứng minh pt đó lớn hơn 0 sẽ có 2 nghiệm phân biệt 

b) \(x_1;x_2\) là 2 nghiệm phân biệt của phương trình ( gt )

Xài hệ thức vi - ét =)

\(3\left(x_1+x_2\right)=5x_1x_2\)\(\Leftrightarrow6\left(m+1\right)=5\left(2m-4\right)\)

Tới đây easy rồi giải nốt vs kết luận đi nha :))))

15 tháng 2 2019

ừm tối làm trận xếp hạng rồi nghỉ vô naruto online đi S930 nha 

Đợi t làm vào đã rồi chơi tí học tiếp

16 tháng 5 2021

a)Ta có:
`\Delta'`
`=(m+1)^2-6m+4`
`=m^2+2m+1-6m+4`
`=m^2-4m+5`
`=(m-2)^2+1>=1>0(AA m)`
`=>`phương trình (1) luôn có 2 nghiệm phân biệt với mọi m
Câu b đề không rõ :v

3 tháng 5 2016

chỉ viec tinh denta va tui chac chan la denta k con thm so m va >0 nen la dpcm

3 tháng 5 2016

Lập Delta rồi cho nó >0 giải ra . K = \(x_1^2+x_2^2=x_1^2+x_2^2+2x_1x_2-2x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2\) áp dụng vi-et thay vào là ra

a: Khi m=1/2 thì \(x^2-2x-\dfrac{1}{4}-4=0\)

\(\Leftrightarrow x^2-2x-\dfrac{17}{4}=0\)

\(\Leftrightarrow4x^2-8x-17=0\)

\(\Leftrightarrow\left(2x-2\right)^2=21\)

hay \(x\in\left\{\dfrac{\sqrt{21}+2}{2};\dfrac{-\sqrt{21}+2}{2}\right\}\)

b: \(\text{Δ}=\left(-2\right)^2-4\left(-m^2-4\right)\)

\(=4+4m^2+16=4m^2+20>0\)

Do đó: Phương trình luôn có hai nghiệm phân biệt