Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ theo định lí Vi-ét ta có : x1+x2 = -1-2m hay -3-2 = -1-2m <=>m=2
và x1x2 = c/a = -n+3 hay (-3).(-2) = -n+3 <=> n= -3
Mình mới làm kịp câu thôi vì mình bận lắm nên bữa khác giải quyết nha
- Với \(m=\dfrac{5}{2}\) pt trở thành pt bậc nhất nên chỉ có 1 nghiệm (loại)
- Với \(m\ne\dfrac{5}{2}\) ta có:
\(a+b+c=2m-5-2\left(m-1\right)+3=0\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm: \(\left[{}\begin{matrix}x=1\\x=\dfrac{3}{2m-5}\end{matrix}\right.\)
Do 1 là số nguyên dương nên để pt có 2 nghiệm pb đều nguyên dương thì:
\(\left\{{}\begin{matrix}\dfrac{3}{2m-5}\ne1\\\dfrac{3}{2m-5}\in Z^+\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ne4\\2m-5=Ư\left(3\right)=\left\{1;3\right\}\end{matrix}\right.\) (do nghiệm nguyên dương và 3 dương nên ta chỉ cần xét các ước dương của 3)
\(\Rightarrow\left\{{}\begin{matrix}m\ne4\\m=\left\{3;4\right\}\end{matrix}\right.\)
\(\Rightarrow m=3\)
Đề là "hai nghiệm dương" hay "hai nghiệm nguyên dương" vậy em?
\(x^2+5x-n=0\)
\(\Delta=25+4n\ge0\Rightarrow n\ge-\frac{25}{4}\)
Khi đó, để pt có 2 nghiệm đều ko dương
\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=-5< 0\\x_1x_2=-n\ge0\end{matrix}\right.\) \(\Rightarrow n\le0\)
Vậy để pt có nghiệm dương \(\Rightarrow n>0\)
\(\Rightarrow n=1\) là số nguyên dương nhỏ nhất để pt có nghiệm dương
b. Theo hệ thức $Vi - et$: \(\left\{{}\begin{matrix}x_1+x_2=m+5\left(1\right)\\x_1x_2=2m+6\left(2\right)\end{matrix}\right.\)
Theo đề bài ta có: $x_1+x_2=5(3)$
Từ $(1)$ và $(3)$ suy ra: \(\left\{{}\begin{matrix}x_1+x_2=m+5\\x_1+x_2=5\end{matrix}\right.\)
$\Rightarrow$ Hệ phương trình vô nghiệm.
Vậy không tìm được $m$ thỏa mãn.
x^2-(m+5)x+2m+6=0(m khác -5)
A)TA CÓ △=[-(m+5)]^2-4(2m+6)
=m^2+10m+25-8m-24
=m^2+2m+1
=(m+1)^2>0 (với mọi m)
Vậy pt đã cho luông có 2no
b)Với mọi m thì pt đã cho có 2no x1,x2 nên theo hệ thức Viet ta có :
\(\left\{{}\begin{matrix}x1+x2=m+5\\x1x2=2m+6\end{matrix}\right.\)
theo bài ta có x1+x2=5
=>x1=5-x2
thay x1=5-x2 vào hệ thức Viet ta đc :
5-x2+x2=m+5
=>m=0(tm)
Vậy với m=o thì pt đã cho có 2no x1,x2 tm x1+x2=5
Bài 2 :
a,- Để phương trình có 2 nghiệm phân biệt thì : \(\Delta>0\)
<=> \(m^2-4.1.\left(2m-4\right)>0\)
<=> \(m^2-8m+16>0\)
<=> \(\left(m-4\right)^2>0\)
<=> \(m-4>0\)
<=> \(m>4\)
- Nên phương trình có 2 nghiệm phân biệt là :
\(x_1=\frac{m+\sqrt{m-4}}{2},x_2=\frac{m-\sqrt{m-4}}{2}\)
a, Ta có : \(x^2_1+x_2^2=13\)
=> \(\left(\frac{m+\sqrt{m-4}}{2}\right)^2+\left(\frac{m-\sqrt{m-4}}{2}\right)^2=13\)
=> \(\left(m+\sqrt{m-4}\right)^2+\left(m-\sqrt{m-4}\right)^2=52\)
=> \(m^2+2m\sqrt{m-4}+m-4+m^2-2m\sqrt{m-4}+m-4-52=0\)
=> \(2m^2+2m-60=0\)
=> \(m^2+m-30=0\)
=> \(m^2+\frac{m.2.1}{2}+\frac{1}{4}=30+\frac{1}{4}=\frac{121}{4}\)
=> \(\left(m+\frac{1}{2}\right)^2=\frac{121}{4}\)
=> \(\left[{}\begin{matrix}m=\sqrt{\frac{121}{4}}-\frac{1}{2}=5\left(TM\right)\\m=-\sqrt{\frac{121}{4}}-\frac{1}{2}=-6\left(KTM\right)\end{matrix}\right.\)
Vậy m có giá trị bằng 5 thỏa mãn điều kiện .
b, Làm tương tự nha .