Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT : \(x^2-\left(2m-3\right)x+m^2-3m=0\)
a ) Làm tổng luôn ta chỉ cần thay m = 1 là xong
b ) \(\Delta_{\left(x\right)}=\left(2m-3\right)^2-4\left(m^2-3m\right)=4m^2-12m+9-4m^2+12m=9\)\(>0\forall m\in R\Rightarrowđpcm\)
c ) \(\hept{\begin{cases}x_1=m-3;x_2=m\\m>m-3\forall m\in R\\1< x_1< x_2< 6\end{cases}}\) quay lại a ) m=1 \(\Rightarrow\hept{\begin{cases}x_1=-2\\x_2=1\end{cases}}\) hoặc \(\hept{\begin{cases}x_1=1\\x_2=-2\end{cases}}\)
\(4< m< 6\)
GIỜ BÀI NÀY KHÔNG CÒN GIAO LƯU NỮA
(1) (M+1)^2 -2m=m^2 +1 >=0 moi m => (1) được c/m
(2) x1^2 +x^2 =12
=> 4(m+1)^2 -4m =12
m^2+m+1=3 => m=1, -2
=> m
(3) từ (2) GTNN A=3/4 khi x=-1/2
có thể sai đừng tin
Viết lại đề : \(x^2-2mx+m^2-1=0\left(a=1;b=-2m;c=m^2-1\right)\)( 1 )
a, Thay m = 1 vào pt (1) ta đc
\(x^2-2.1x+1^2-1=0\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
Tương ứng vs : \(\left(2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+4=4>0\)(EZ>33)
c, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=2m;x_1x_2=m^2-1\)
Theo bài ra ta có : \(x_1+x_2=12\)Thay vào ta đc
\(\Leftrightarrow2m=12\Leftrightarrow m=6\)
Phương trình: \(x^2-2\left(m-1\right)x+m-4=0\left(1\right)\)
a/ Xét phương trình (1) có \(\Delta=4\left(m-1\right)^2-4\left(m-4\right)\)
= \(4m^2-8m+4-4m+16\)
= \(4m^2-12m+20\)
= \(\left(2m-3\right)^2+11\)
Ta luôn có: \(\left(2m-3\right)^2\ge0\) với mọi m
\(\Rightarrow\left(2m-3\right)^2+11>0\) với mọi m
\(\Leftrightarrow\Delta>0\) với mọi m
Vậy phương trình (1) có 2 nghiệm phân biệt với mọi giá trị của m
b/ Xét phương trình (1), áp dụng hệ thức Vi-ét ta có:
\(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-4\end{matrix}\right.\)
Theo đề bài ta có:
\(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)
= \(x_1-x_1x_2+x_2-x_1x_2\)
=\(\left(x_1+x_2\right)-2x_1x_2\)
= \(2\left(m-1\right)-2\left(m-4\right)\)
= 2m-2-2m+8
= 6
Vậy biểu thức \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\) không phụ thuộc vào m
1) \(\Delta\)' = (-m+2)2 -2m+5 = 4-4m+m2-2m+5 = m2-6m+9 = (m-3)2 \(\ge\) 0
=> pt luôn có nghiệm với mọi m
2) ta có : B = x1(1-x2) + x2(1-x1) < 4
<=>B = x1 - x1x2 + x2 - x1x2 < 4
<=> B = (x1 + x2 ) - 2x1x2 < 4
theo định lí vi - ét ta có \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m+4\\x_1x_2=\dfrac{c}{a}=2m-5\end{matrix}\right.\)
=> 2m+4 - 2(2m-5) < 4
=> -2m + 14 < 4
=> -2m < -10
=> m > 5
vậy để pt thỏa mãn B = x1(1-x2) + x2(1-x1) < 4 thì m > 5
b=-2(m-2) thì ở Vi- ét x1+x2=2(m-2)=2m-4 chứ bạn ei