Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Để PT có 2 nghiệm phân biệt $x_1,x_2$ thì:
\(\Delta'=(m+2)^2-(m^2+m+3)>0\)
\(\Leftrightarrow 3m+1>0\Leftrightarrow m> \frac{-1}{3}\)
Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2(m+2)\\ x_1x_2=m^2+m+3\end{matrix}\right.\)
\(x_1x_2=m^2+m+3=(m+\frac{1}{2})^2+\frac{11}{4}\neq 0, \forall m>\frac{-1}{3}\) nên $x_1,x_2\neq 0$ với mọi \(m> \frac{-1}{3}\).
Khi đó:
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=1\)
\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=4\)
\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)
\(\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=6\Rightarrow (x_1+x_2)^2=6x_1x_2\)
\(\Leftrightarrow 4(m+2)^2=6(m^2+m+3)\)
\(\Leftrightarrow 2m^2-10m+2=0\)
\(\Leftrightarrow m=\frac{5\pm \sqrt{21}}{2}\) (thỏa mãn)
Do \(x_1x_2=-\frac{2019}{2017}< 0\Rightarrow\) pt có 2 nghiệm trái dấu.
\(\sqrt{x_1^2+2018}-x_2=\sqrt{x_2^2+2018}+x_1\)
\(\Rightarrow x_1^2+x_2^2+2018-2x_2\sqrt{x^2_1+2018}=x_1^2+x_2^2+2018+2x_1\sqrt{x_2^2+2018}\)
\(\Leftrightarrow-x_2\sqrt{x_1^2+2018}=x_1\sqrt{x_2^2+2018}\)
\(\Rightarrow x_2^2\left(x_1^2+2018\right)=x_1^2\left(x_2^2+2018\right)\)
\(\Rightarrow x_1^2=x_2^2\Rightarrow x_1=-x_2\) (do \(x_1;x_2\) trái dấu)
\(\Rightarrow x_1+x_2=0\Rightarrow\frac{m-2018}{2017}=0\Rightarrow m=2018\)
Chị gì gì ơi những bài toán khó như vậy chị nên đăng trên H.VN
Ở đó học sinh lớp 9,10,8,7 sẽ giúp cho
Ta có \(\Delta'=\left(m-1\right)^2-2m+5\ge0\)
=> \(m^2-4m+6\ge0\)luôn đúng
Theo vi-et ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=2m-5\end{cases}}\)
Khi đó
\(P=\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)^2-2\)
\(=\left(\frac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}\right)^2-2\)
\(=\left(\frac{4\left(m-1\right)^2}{2m-5}-2\right)^2-2\)
\(=\left(\frac{4m^2-10m+2m-5+9}{2m-5}-2\right)^2-2\)
\(=\left(2m+1+\frac{9}{2m-5}-2\right)^2-2\)
\(=\left(2m-1+\frac{9}{2m-5}\right)^2-2\)
Để P là số nguyên
=> \(\frac{9}{2m-5}\)là số nguyên
=> \(2m-5\in\left\{\pm1;\pm3;\pm9\right\}\)
=> \(m\in\left\{-2;1;2;3;4;7\right\}\)
Kết hợp với ĐK
=> \(m\in\left\{1;2;3;4;7\right\}\)
Vậy \(m\in\left\{1;2;3;4;7\right\}\)
giải pt tìm x1 ; x 2 theo m
sau đó giải BPT tìm m thối.x1>1 và x2 < 6
denta= (2m-3)^2 -4(m^2-3m)=9>0 => pt luôn có 2 nghiệm phân biệt với mọi x
*x1=[2m-3+9]/2=m+3
*x2=[2m-3-9]/2=m-6
Theo bài ra ta có: hai nghiệm x1, x2 cùng dương <=> P>0 và S>0
=> m>3 thì hai nghiệm x1, x2 luôn cùng dương.
Ta có : \(x^2+\left(m^2+1\right)x+m=2\)
\(\Leftrightarrow x^2+\left(m^2+1\right)x+m-2=0\left(a=1;b=m^2+1;c=m-2\right)\)
a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)hay
\(\left(m^2+1\right)^2-4\left(-2\right)=m^4+1+8=m^4+9>0\) (hoàn toàn đúng, ez =))
b, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=-m^2-1;x_1x_2=m-2\)
Đặt \(x_1;x_2\)lần lượt là \(a;b\)( cho viết dễ hơn )
Theo bài ra ta có \(\frac{2a-1}{b}+\frac{2b-1}{a}=ab+\frac{55}{ab}\)
\(\Leftrightarrow\frac{2a^2-a}{ab}+\frac{2b^2-b}{ab}=\frac{\left(ab\right)^2}{ab}+\frac{55}{ab}\)
Khử mẫu \(2a^2-a+2b^2-b=\left(ab\right)^2+55\)
Tự lm nốt vì I chưa thuộc hđt mà lm )):
a,\(x^2+\left(m^2+1\right)x+m=2\)
\(< =>x^2+\left(m^2+1\right)x+m-2=0\)
Xét \(\Delta=\left(m^2+1\right)^2-4.\left(m-2\right)=1+m^4-4m+8\)(đề sai à bạn)
b,Để phương trình có 2 nghiệm phân biệt : \(\Delta>0\)
\(< =>\left(m^2+1\right)^2-4\left(m-2\right)>0\)
\(< =>4m-8< m^4+1\)
\(< =>4m-9< m^4\)
\(< =>m>\sqrt[4]{4m-9}\)
Ta có : \(\frac{2x_1-1}{x_2}+\frac{2x_2-1}{x_1}=x_1x_2+\frac{55}{x_1x_2}\)
\(< =>\frac{2x_1^2-x_1+2x_2^2-x_2}{x_1x_2}=\frac{\left(x_1x_2\right)^2+55}{x_1x_2}\)
\(< =>2\left[\left(x_1+x_2\right)\left(x_1-x_2\right)\right]-\left(x_1+x_2\right)=\left(x_1x_2\right)^2+55\)
đến đây dễ rồi ha
\(\Delta=4\left(m-2\right)^2+4m^2\)
\(A=8m^2-16m+16\)
Để pt có 2 ng0 dương pb: \(\left\{{}\begin{matrix}\Delta>0\\P=m^2>0\\S=2m-4>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m>2\end{matrix}\right.\)\(\Rightarrow m>2\)
\(\left|x_1\right|-\left|x_2\right|=6\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=36\)
\(\Leftrightarrow4\left(m-2\right)^2-4m^2=36\)
\(\Leftrightarrow m=\frac{-5}{4}\left(KTM\right)\)
Vậy ko tồn tại m.