\(x^2-2\left(m-1\right)x-3-m=0\)

( m là tham số )

a, CMR : PT luôn c...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2018

\(x^2-2\left(m-1\right)x-3-m=0\)  \(\left(1\right)\)

từ \(\left(1\right)\)  ta có \(\Delta'=\left[-\left(m-1\right)\right]^2-\left(-3-m\right)\)

\(\Delta'=m^2-2m+1+m+3\)

\(\Delta'=m^2-m+4\)

25 tháng 3 2018

Câu b, nx cơ bn ơi !

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
10 tháng 8 2018

dùng phương pháp Vi-ét ko hoàn toàn

(mình đăng lên youtube rồi đấy)

10 tháng 8 2018

xem rồi giùm mk nha

16 tháng 5 2019

a, m=2

=> \(x^2-6x+8=0\)=> \(\orbr{\begin{cases}x=2\\x=4\end{cases}}\)

b, Để phương trình có 2 nghiệm

thì \(\Delta'=\left(m+1\right)^2-m^2-4=2m-3\ge0\)=> \(m\ge\frac{3}{2}\)

Theo viet ta có

\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+4\end{cases}}\)

Vì x2 là nghiệm của phương trình 

nên \(2\left(m+1\right)x_2=x^2_2+m^2+4\)

Khi đó 

\(\left(x_1^2+x^2_2\right)+m^2+4\le3m^2+16\)

=> \(\left(x_1+x_2\right)^2-2x_1x_2\le2m^2+12\)

=> \(4\left(m+1\right)^2-2\left(m^2+4\right)\le2m^2+12\)

=.>\(8m\le16\)=>\(m\le2\)

Vậy \(m\le2\)

12 tháng 3 2020

Phương trình đã cho có nghiệm\(\Leftrightarrow\Delta'=m-1\ge0\Leftrightarrow m\ge1\)

Theo hệ thức Vi - et, ta có: \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=2-m\end{cases}}\)

\(\Rightarrow m=x_1+x_2-x_1x_2\),Thay vào hệ thức \(2x_1^3+\left(m+2\right)x_2^2=5\),ta được:

\(2x_1^3+\left(2x_1+2x_2-x_1x_2\right)x_2^2=5\)

\(\Leftrightarrow2x_1^3+2x_1x_2^2+2x_2^3-x_1x_2^3=5\)

\(\Leftrightarrow2\left(x_1^3+x_2^3\right)-x_1x_2\left(x_2^2-2x_2\right)=5\)

\(\Leftrightarrow2\left(x_1+x_2\right)\left[\left(x_1+x_2\right)^2-3x_1x_2\right]-x_1x_2\left(x_2^2-2x_2\right)=5\)

Vì x2 là nghiệm nên \(x_2^2-2x_2+2-m=0\)

\(\Leftrightarrow x_2^2-2x_2=m-2\left(1\right)\)

Đến đây tiếp tục dùng viet và tìm được m = 1

P/S: Không chắc

13 tháng 7 2017

a. Pt(1) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta=4\left(m-1\right)^2-4.m^2=4\left(m^2-2m+1\right)-4m^2=-8m+4>0\)

\(\Rightarrow m< \frac{1}{2}\)

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m^2\end{cases}}\)

Từ \(x_1^2+x_2^2-3.x_1.x_2+3=0\Rightarrow\left(x_1+x_2\right)^2-5.x_1.x_2+3=0\)

\(\Rightarrow4\left(m^2-2m+1\right)-5m^2+3=0\Rightarrow-m^2-8m+7=0\)

\(\Rightarrow\orbr{\begin{cases}m=-4-\sqrt{23}\\m=-4+\sqrt{23}\left(l\right)\end{cases}}\)

Vậy \(m=-4-\sqrt{23}\)

20 tháng 6 2021

Đề sai nhé , sửa \(\left(x_1-2\right)^2\)thành \(\left(x_1-1\right)^2\)nhé

Để PT \(x^2+5x+m-2=0\)có 2 nghiệm phân biệt \(x_1;x_2\)ta phải có :

\(\Delta=5^2-4\left(m-2\right)=33-4m>0\Leftrightarrow m< \frac{33}{4}\)(*)

Theo định lí Viet , ta có : \(\hept{\begin{cases}x_1+x_2=-5\\x_1x_2=m-2\end{cases}}\)

Để các nghiệm \(x_1;x_2\)thỏa mãn hệ thức đã cho thì các nghiệm đó phải khác 1 , khi đó đk là :

\(1^2+5.1+m-2\ne0\Leftrightarrow m\ne-4\)(**)

Ta có : \(\frac{1}{\left(x_1-1\right)^2}+\frac{1}{\left(x_2-1\right)^2}=1\)

\(\Leftrightarrow\left(x_2-1\right)^2+\left(x_1-1\right)^2=\left(x_1-1\right)^2\left(x_2-1\right)^2\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2\left(x_1+x_2\right)-2x_1x_2+2=\left[x_1x_2-\left(x_1+x_2\right)+1\right]^2\)

\(\Leftrightarrow37-2\left(m-2\right)=\left(m-2+5+1\right)^2\)

\(\Leftrightarrow41-2m=\left(m+4\right)^2\)

\(\Leftrightarrow m^2+10m-25=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=-5+5\sqrt{2}\\m=-5-5\sqrt{2}\end{cases}}\)( tm * và ** )

Vậy với \(m=-5\pm5\sqrt{2}\)thì tm đề bài

24 tháng 3 2020
https://i.imgur.com/jyxbj19.jpg
13 tháng 5 2019

Bạn tham khảo tại đây nhé:

Câu hỏi của KHÔNG CẦN BIẾT - Toán lớp 7 - Học toán với OnlineMath

a, thay m = 3 vào pt ta đc

x2  - ( 2 . 3 +1)x + 2.3 = 0

x2  - 7x + 6 =0

ta có a + b+c= 1 -7 + 6=0

\(\Rightarrow\)pt có 2 nghiệm pb x1 = 1 

                                       x2 = 6

b, x2 - (2m +1 )x + 2m=0

 \(\Delta\)= [ - (2m + 1 )]2  - 4.2m

        = 4m2 + 4m + 1 - 8m 

          = 4m2 - 4m + 1 

         = (2m-1)2 \(\ge\)\(\forall\)m

để pt có 2 nghiệm pb thì   2m - 1 \(\ne\)

                                          m \(\ne\)1/2

theo hệ thức vi ét ta có

x1 + x2 = 2m + 1

x1 x2 = 2m

ta có | x1| - |x2| = 2

       ( |x1| - |x2| )2 = 4

       x12  - 2 |x1x2| + x22   =4

        x12 + 2 x1x2 + x22 - 2x1x2 - 2 | x1x2| = 4

  ( x1 + x2)2  - 2 |x1x2| = 4

(2m + 1 )2 - 2|2m|=4   (1 )

+, nếu 2m \(\ge\)\(\Rightarrow\)\(\ge\)0 thì

(1)\(\Leftrightarrow\)(2m + 1)2  - 4m = 4

                   4m2 + 4m + 1 - 4m = 4

                     4m2 = 3

                        m2 = 3/4

\(\Leftrightarrow\orbr{\begin{cases}m=\frac{\sqrt{3}}{2}\left(tm\right)\\m=-\frac{\sqrt{3}}{4}\left(ktm\right)\end{cases}}\)

+, 2m < 0 suy ra m < 0 thì 

(1) : (2m + 1 )2  + 4m =4

          4m2 + 4m + 1 + 4m = 4

           4m2 + 8m - 3 =0

       \(\Delta\)= 64 + 4.4.3 = 112 > 0

pt có 2 nghiệm pb x1 = \(\frac{-8+\sqrt{112}}{8}\)\(\frac{-2+\sqrt{7}}{2}\)(ko tm)

                                x2 = \(\frac{-2-\sqrt{7}}{2}\)(tm)

vậy m \(\in\){\(\frac{\sqrt{3}}{2}\)\(\frac{-2-\sqrt{7}}{2}\)} thì ...........

ko bt có đúng ko nữa 

#mã mã#