K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2019

Để phương trình có 2 nghiệm trái dấu:

\(ac< 0\Rightarrow m\left(m-4\right)< 0\Rightarrow0< m< 4\)

NV
10 tháng 3 2019

Để phương trình có hai nghiệm cùng dấu:

\(\left\{{}\begin{matrix}\Delta>0\\a.c>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)^2-8\left(m-1\right)>0\\2\left(m-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4m^2-12m+9>0\\m>1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-3\right)^2>0\\m>1\end{matrix}\right.\) \(\Rightarrow m>1\)

Khi đó, ta có \(x_1+x_2=2m-1>2-1>0\Rightarrow\) hai nghiệm đều mang dấu dương

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

2 tháng 1 2022

còn thiếu -b/a > 0  ạ

14 tháng 6 2020

a,Với \(m=4\)thì phương trình tương đương với :

\(x^2-4x+3=0\)

Ta dễ dàng nhận thấy

\(a+b+c=1-4+3=0\)

nên phương trình sẽ có

\(\left\{{}\begin{matrix}x_1=1\\x_2=3\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là : \(\left\{1;3\right\}\)

b,sửa đề thành cộng nhé :)

Theo hệ thức vi ét ta có :

\(x_1+x_2=m\)

Theo đề bài ta có : \(\left[{}\begin{matrix}x_1+x_2=4\\x_1+x_2=-4\end{matrix}\right.\)

\(< =>\left[{}\begin{matrix}m=4\\m=-4\end{matrix}\right.\)

NV
15 tháng 2 2022

3.

Phương trình có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)

Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)

Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)

Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)

Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải

NV
15 tháng 2 2022

1. Có 2 cách giải:

C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)

\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)

\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

9 tháng 3 2023

\(2)mx^2-2\left(m-1\right)x+m-1=0\)

Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)

\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)

\(\Leftrightarrow-4m+4=0\)

\(\Leftrightarrow m=1\)

Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)

9 tháng 3 2023

bạn giải 1 giúp mình với

AH
Akai Haruma
Giáo viên
1 tháng 4 2019

Lời giải:
a)

Khi $t=1$ thì PT trở thành:

\(x^2-2=0\Leftrightarrow x^2=2\Rightarrow x=\pm \sqrt{2}\)

b)

Để (1) có nghiệm thì \(\Delta'_{(1)}\geq 0\)

\(\Leftrightarrow (t-1)^2-(t^2-3)\geq 0\)

\(\Leftrightarrow -2t+4\geq 0\)

\(\Leftrightarrow t\leq 2\)

c) Để PT có 2 nghiệm thì \(\Delta'_{(1)}>0\Leftrightarrow t< 2\). Khi đó với $x_1,x_2$ là 2 nghiệm của (1), áp dụng định lý Vi-et ta có:

\(\left\{\begin{matrix} x_1+x_2=2(t-1)\\ x_1x_2=t^2-3\end{matrix}\right.\)

Tổng 2 nghiệm bằng tích 2 nghiệm, nghĩa là:

\(x_1+x_2=x_1x_2\)

\(\Leftrightarrow 2(t-1)=t^2-3\)

\(\Leftrightarrow t^2-2t-1=0\Rightarrow t=1\pm \sqrt{2}\)

Kết hợp với $t< 2$ suy ra $t=1-\sqrt{2}$

31 tháng 3 2019

ai giúp mk vớiT^T

15 tháng 4 2020

đk m ở đầu tiên là m>-9 và ra kq m=-8 nhé

15 tháng 4 2020

tìm đk để pt có 2 nghiệm không âm mới đúng nha