Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để phương trình có hai nghiệm cùng dấu:
\(\left\{{}\begin{matrix}\Delta>0\\a.c>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-1\right)^2-8\left(m-1\right)>0\\2\left(m-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4m^2-12m+9>0\\m>1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(2m-3\right)^2>0\\m>1\end{matrix}\right.\) \(\Rightarrow m>1\)
Khi đó, ta có \(x_1+x_2=2m-1>2-1>0\Rightarrow\) hai nghiệm đều mang dấu dương
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
a,Với \(m=4\)thì phương trình tương đương với :
\(x^2-4x+3=0\)
Ta dễ dàng nhận thấy
\(a+b+c=1-4+3=0\)
nên phương trình sẽ có
\(\left\{{}\begin{matrix}x_1=1\\x_2=3\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là : \(\left\{1;3\right\}\)
b,sửa đề thành cộng nhé :)
Theo hệ thức vi ét ta có :
\(x_1+x_2=m\)
Theo đề bài ta có : \(\left[{}\begin{matrix}x_1+x_2=4\\x_1+x_2=-4\end{matrix}\right.\)
\(< =>\left[{}\begin{matrix}m=4\\m=-4\end{matrix}\right.\)
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
\(2)mx^2-2\left(m-1\right)x+m-1=0\)
Để pt có nghiệm kép \(\Leftrightarrow\left\{{}\begin{matrix}a\ne0\\\Delta=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\left[-2\left(m-1\right)\right]^2-4m\left(m-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow4\left(m^2-2m+1\right)-4m^2+4m=0\)
\(\Leftrightarrow4m^2-8m+4-4m^2+4m=0\)
\(\Leftrightarrow-4m+4=0\)
\(\Leftrightarrow m=1\)
Vậy để pt trên có nghiệm kép thì \(\left\{{}\begin{matrix}m\ne0\\m=1\end{matrix}\right.\)
Lời giải:
a)
Khi $t=1$ thì PT trở thành:
\(x^2-2=0\Leftrightarrow x^2=2\Rightarrow x=\pm \sqrt{2}\)
b)
Để (1) có nghiệm thì \(\Delta'_{(1)}\geq 0\)
\(\Leftrightarrow (t-1)^2-(t^2-3)\geq 0\)
\(\Leftrightarrow -2t+4\geq 0\)
\(\Leftrightarrow t\leq 2\)
c) Để PT có 2 nghiệm thì \(\Delta'_{(1)}>0\Leftrightarrow t< 2\). Khi đó với $x_1,x_2$ là 2 nghiệm của (1), áp dụng định lý Vi-et ta có:
\(\left\{\begin{matrix} x_1+x_2=2(t-1)\\ x_1x_2=t^2-3\end{matrix}\right.\)
Tổng 2 nghiệm bằng tích 2 nghiệm, nghĩa là:
\(x_1+x_2=x_1x_2\)
\(\Leftrightarrow 2(t-1)=t^2-3\)
\(\Leftrightarrow t^2-2t-1=0\Rightarrow t=1\pm \sqrt{2}\)
Kết hợp với $t< 2$ suy ra $t=1-\sqrt{2}$
Để phương trình có 2 nghiệm trái dấu:
\(ac< 0\Rightarrow m\left(m-4\right)< 0\Rightarrow0< m< 4\)