K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2015

\(\Delta=25-4m\)pt có 2 nghiệm <=> \(\Delta\ge0\Leftrightarrow25-4m\ge0\Leftrightarrow m\le\frac{25}{4}\)

áp dụng hệ thức vi ét ta có: \(x1+x2=5\) (1) ; \(x1.x2=m\)(2)

|x1-x2|=3 

th1: x1-x2=3 <=> x1=3+x2 =>thế vào (1):  x2+3+x2=5 <=> 2x2=2 <=> x2=1 =>x1=1+3=4 => x1.x2=m=1.4 => m=4(t/m đk)

th2: x1-x2=-3 <=> x1=-3+x2 => x2-3+x2=5 <=> x2=4 => x1=1 => m=1.4=4 (t/m đk)

=> pt có 2 nghiệm... <=> m=4

17 tháng 4 2019

đầu tiên bn tính đenta

cho đenta lớn hơn hoặc = 0 thì pt có nghiệm

b, từ x1-2x2=5

=> x1=5+2x2

chứng minh đenta lớn hơn 0

theo hệ thức viet tính đc x1+x2=..

x1*x2=....

thay vào cái 1 rồi vào 2 là đc

15 tháng 6 2015

1) \(\Delta=m^2-4\left(m-1\right)=m^2-4m+4=\left(m-2\right)^2\ge0\)với mọi m=> pt luôn có nghiệm với mọi m

a) áp dụng hệ thức vi ét ta có: \(x1+x2=-m\)\(x1.x2=m-1\)

 \(B=x1^2+x2^2-4\left(x1+x2\right)=\left(x1+x2\right)^2-2x1x2-4\left(x1+x2\right)=m^2-2\left(m-1\right)-4\left(-m\right)=m^2+2m-2\)

\(=\left(m^2+2m+1\right)-3=\left(m+1\right)^2-3\ge-3\Rightarrow MinB=-3\Leftrightarrow m=-1\)

2) \(2x^2+2x+3x+3=0\Leftrightarrow\left(x+1\right)\left(2x+3\right)=0\Rightarrow\)x1=-1 và x2=-3/2

tổng 2 nghiệm \(x1^2+1+x2^2+1=1^2+1+\left(-\frac{3}{2}\right)^2+1=\frac{21}{4}\)

tích 2 nghiệm \(=\left(1^2+1\right)\left(\frac{3}{2}^2+1\right)=\frac{13}{2}\)=> PT cần tìm: \(x^2-\frac{21}{4}x+\frac{13}{2}=0\)

 

AH
Akai Haruma
Giáo viên
26 tháng 11 2019

Lời giải:

a)

Khi $m=1$ thì PT(1) trở thành:

$x^2-6x+8=0$

$\Leftrightarrow x^2-2x-4x+8=0\Leftrightarrow x(x-2)-4(x-2)=0$

$\Leftrightarrow (x-2)(x-4)=0\Rightarrow x=2$ hoặc $x=4$

b)

Để PT có nghiệm phân biệt $x_1,x_2$ thì:

$\Delta'=(m+2)^2-(m^2+7)>0$

$\Leftrightarrow 4m-3>0\Leftrightarrow m>\frac{3}{4}(*)$

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2(m+2)\\ x_1x_2=m^2+7\end{matrix}\right.\)

Khi đó:

$x_1x_2-2(x_1+x_2)=4$

$\Leftrightarrow m^2+7-4(m+2)=4$

$\Leftrightarrow m^2-4m-5=0$

$\Leftrightarrow m=5$ hoặc $m=-1$

Kết hợp với $(*)$ suy ra $m=5$

18 tháng 4 2017

Giải:

Để phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thì \(\Delta>0\)

\(\Leftrightarrow\left(2m-1\right)^2-4.2\left(m-1\right)>0\)

Từ đó suy ra \(m\ne1,5\left(1\right)\)

Mặt khác, theo định lý Viet và giả thiết ta có:

\(\hept{\begin{cases}x_1+x_2=-\frac{2m-1}{2}\\x_1.x_2=\frac{m-1}{2}\\3x_1-4x_2=11\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_1=\frac{7m-7}{26-8m}\\3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\end{cases}}\)

Giải phương trình \(3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\) 

Ta được \(m=-2\) và \(m=4,125\left(2\right)\)

Đối chiếu điều kiện  \(\left(1\right)\)  và \(\left(2\right)\) ta có: Với \(m=-2\) hoặc \(m=4,125\) thì phương trình đã có 2 nghiệm phân biệt

2 tháng 4 2018

Câu 1 nè:Phương trình trình trên có 2 nghiệm phân biệt khi ∆>0 tức là (2m-1)²-8(m-1) =(2m-3)² >0 <=>m khác 2/3 
Từ đó ta tính đc 
x1=-1/2 
x2=1-m hoặc x1=1-m,x2=-1/2 
bạn thay vào 
3x1-4x2=11 là tìm ra m,chú ý xét cả 2 trường hợp,nếu tìm ra m=3/2 thì loại.