Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a
ta có: \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)\)
= m^2-m^2+1=1>0
vậy pt luôn có 2 no vs mọi m
a)\(\Delta=m^2-\left(m+1\right)\left(m-1\right)=m^2-m^2+1=1\)
Vậy pt luôn có 2 nghiệm với mọi m
b)
Theo hệ thức Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)
mà \(\frac{m+1}{m-1}=5\Rightarrow m=1,5\)
vậy \(x_1\cdot x_2=\frac{2m}{m-1}=6\)
\(\hept{\begin{cases}x_1+x_2=\frac{2m}{m-1}=2+\frac{2}{m-1}\\x_1\cdot x_2=\frac{m+1}{m-1}=1+\frac{2}{m-1}\end{cases}}\)
\(\Rightarrow x_1+x_2-x_1\cdot x_2=2+\frac{2}{m-1}-1-\frac{2}{m-1}=1\)
c)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}+\frac{5}{2}=0\Rightarrow\frac{x_1^2+x_2^2+2x_1x_2+3x_1x_2}{2x_1x_2}=0\Rightarrow\left(x_1+x_2\right)^2+3x_1x_2=0\)
\(\Leftrightarrow\left(\frac{2m}{m-1}\right)^2+\frac{3\left(m+1\right)}{m-1}=0\Rightarrow m=\pm\sqrt{\frac{3}{7}}\)
a) x1^2+x2^2=(x1+x2)^2-2x1x2
x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1x2)
áp dụng viét thay vô
b) giải hệ pt
đenta>=0
x1+x2=-m
x1x2=m+3
và 2x1+3x2=5
c)thay x=-3 vào tìm ra m rồi thay m đó vô giải ra lại
d)áp dụng viét
x1+x2=-m
x1x2=m+3
CT liên hệ ko phụ thuộc m là x1 +x2+x1x2=-m+m+3=3
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đ
Bài 1/
a/ Ta có: ∆' = (m - 1)2 + 3 + m
= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)
Vậy PT luôn có 2 nghiệm phân biệt.
Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)
Theo đề bài thì
\(x^2_2+x^2_1\ge10\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)
\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)
Làm tiếp sẽ ra. Câu còn lại tương tự
a/ \(m=4\to x^2-8x+7=0\\\leftrightarrow x^2-7x-x+7=0\\\leftrightarrow x(x-7)-(x-7)=0\\\leftrightarrow (x-1)(x-7)=0\\\leftrightarrow x-1=0\quad or\quad x-7=0\\\leftrightarrow x=1\quad or\quad x=7\)
b/ Pt có 2 nghiệm phân biệt
\(\to \Delta=(-2m)^2-4.1.(2m-1)=4m^2-8m+4=4(m^2-2m+1)=4(m-1)^2\ge 0\)
\(\to m\in \mathbb R\)
c/ Theo Viét
\(\begin{cases}x_1+x_2=2m\\x_1x_2=2m-1\end{cases}\)
Tổng bình phương các nghiệm là 10
\(\to x_1^2+x_2^2\\=(x_1+x_2)^2-2x_1x_2=(2m)^2-2.(2m-1)=4m^2-4m+2\)
\(\to 4m^2-4m+2=10\)
\(\leftrightarrow 4m^2-4m-8=0\)
\(\leftrightarrow m^2-m-2=0\)
\(\leftrightarrow m^2-2m+m-2=0\)
\(\leftrightarrow m(m-2)+(m-2)=0\)
\(\leftrightarrow (m+1)(m-2)=0\)
\(\leftrightarrow m+1=0\quad or\quad m-2=0\)
\(\leftrightarrow m=-1(TM)\quad or\quad m=2(TM)\)
Vậy \(m\in\{-1;2\}\)
1) vì pt có 1 nghiệm x = 2 nên
\(2^2-2\left(m+1\right).2+m-4=0\)
\(\Leftrightarrow4-4m-4+m-4=0\)
\(\Leftrightarrow-3m=4\)
\(\Leftrightarrow m=-\frac{4}{3}\)
Thay \(m=-\frac{4}{3}\)vào pt đã cho ta đc
\(x^2-2\left(-\frac{4}{3}+1\right)x-\frac{4}{3}-4=0\)
\(\Leftrightarrow x^2+\frac{2x}{3}-\frac{16}{3}=0\)
\(\Leftrightarrow3x^2+2x-16=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x+8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{8}{3}\end{cases}}\)
Vậy nghiệm còn lại của pt là \(x=-\frac{8}{3}\)
2) Có \(\Delta'=\left(m+1\right)^2-m+4\)
\(=m^2+2m+1-m+4\)
\(=m^2+m+5\)
\(=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}>0\forall m\)
=> Pt luôn có 2 nghiệm phân biệt với mọi m
3) Theo hệ thức Vi-et có
\(x_1+x_2=\frac{-b}{a}=\frac{2\left(m+1\right)}{1}=2m+2\)
\(x_1.x_2=\frac{c}{a}=\frac{m-4}{1}=m-4\)
a,Ta có: \(A=x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\)
\(=x_1-x_1x_2+x_2-x_1x_2\)
\(=\left(x_1+x_2\right)-2x_1x_2\)
\(=2m+2-2\left(m-4\right)\)
\(=2m+2-2m+8\)
\(=10\)ko phụ thuộc vào giá trị của m
b, Từ \(\hept{\begin{cases}x_1+x_2=2m+2\left(1\right)\\x_1+2x_2=3\end{cases}}\)
\(\Rightarrow\left(x_1+2x_2\right)-\left(x_1+x_2\right)=1-2m\)
\(\Rightarrow x_2=1-2m\)
Thế vào (1) ta đc \(x_1+1-2m=2m+2\)
\(\Leftrightarrow x_1=4m+1\)
Lại có: \(x_1x_2=m-4\)
\(\Leftrightarrow\left(4m+1\right)\left(1-2m\right)=m-4\)
\(\Leftrightarrow4m-8m^2+1-2m=m-4\)
\(\Leftrightarrow8m^2-m-5=0\)
\(\Delta=1-4.8.\left(-5\right)=161>0\)
Nên pt có 2 nghiệm phân biệt
\(m_1=\frac{1-\sqrt{161}}{16}\)
\(m_2=\frac{1+\sqrt{161}}{16}\)
c, \(x_1+x_2\ge10x_1x_2+6m-5\)
\(\Leftrightarrow2m+2\ge10\left(m-4\right)+6m-5\)
\(\Leftrightarrow2m+2\ge10m-40+6m-5\)
\(\Leftrightarrow47\ge14m\)
\(\Leftrightarrow m\le\frac{47}{14}\)
Vậy ............
Với \(m\ne1\):
a. \(\Delta'=m^2-\left(m-1\right)\left(m+1\right)=1>0\Rightarrow\) pt luôn có 2 nghiệm pb khi \(m\ne1\)
b. Theo hệ thức Viet: \(x_1x_2=\dfrac{m+1}{m-1}\)
\(\Rightarrow\dfrac{m+1}{m-1}=5\Rightarrow m=\dfrac{3}{2}\)
Khi đó: \(x_1+x_2=\dfrac{2m}{m-1}=\dfrac{2.\dfrac{3}{2}}{\dfrac{3}{2}-1}=6\)
c. \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m}{m-1}\\x_1x_2=\dfrac{m+1}{m-1}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=2+\dfrac{2}{m-1}\\x_1x_2=1+\dfrac{2}{m-1}\end{matrix}\right.\)
\(\Rightarrow x_1+x_2-x_1x_2=1\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
d. \(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}+\dfrac{5}{2}=0\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}+\dfrac{5}{2}=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+\dfrac{1}{2}x_1x_2=0\)
\(\Leftrightarrow\dfrac{4m^2}{\left(m-1\right)^2}+\dfrac{m+1}{2\left(m-1\right)}=0\)
\(\Leftrightarrow8m^2+\left(m^2-1\right)=0\)
\(\Leftrightarrow m^2=\dfrac{1}{9}\Rightarrow m=\pm\dfrac{1}{3}\)