Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đầu tiên bn tính đenta
cho đenta lớn hơn hoặc = 0 thì pt có nghiệm
b, từ x1-2x2=5
=> x1=5+2x2
chứng minh đenta lớn hơn 0
theo hệ thức viet tính đc x1+x2=..
x1*x2=....
thay vào cái 1 rồi vào 2 là đc
Cái x khác -1;-2 bạn tự tìm
Để PT có 2 nghiệm phân biệt thì:
[-(m2+m+1)]2-4.m.(m+1)>0
<=>m4+m2+1+2m3+2m2+2m-4m2-4m>0
<=>m4+2m3-m2-2m+1>0
<=>m4+2m3-2m2+m2-2m+1>0
<=>m4+2m2.(m-1)+(m-1)2>0
<=>(m2+m-1)2>0
Mà (m2+m-1)2 > hoặc = 0 nên:
(m2+m-1)2 khác 0
=>m2+m-1 khác 0
còn lại bạn tự giải tiếp
\(\Delta'=m^2-2m+1+m>0\)với mọi m
\(\int^{x1+x2=2\left(m-1\right)}_{x1.x2=-m}\)
\(\int^{y1+y2=\frac{\left(x1+x2\right)\left(x1x2+1\right)}{x1x2}=S}_{y1.y2=.....=P}\Leftrightarrow pt:X^2-SX+P=0\)
giải pt tìm x1 ; x 2 theo m
sau đó giải BPT tìm m thối.x1>1 và x2 < 6
denta= (2m-3)^2 -4(m^2-3m)=9>0 => pt luôn có 2 nghiệm phân biệt với mọi x
*x1=[2m-3+9]/2=m+3
*x2=[2m-3-9]/2=m-6
Theo bài ra ta có: hai nghiệm x1, x2 cùng dương <=> P>0 và S>0
=> m>3 thì hai nghiệm x1, x2 luôn cùng dương.
Lời giải:
1.
Để pt có 2 nghiệm phân biệt thì:
\(\Delta=(2m-1)^2-4(m^2-1)=5-4m>0\)
\(\Leftrightarrow m< \frac{5}{4}\)
2.
Với \(m< \frac{5}{4}\), áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2m-1\\ x_1x_2=m^2-1\end{matrix}\right.\)
Khi đó:
\((x_1-x_2)^2=x_1-3x_2\)
\(\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1+x_2)-4x_2\)
\(\Leftrightarrow (2m-1)^2-4(m^2-1)=2m-1-4x_2\)
\(\Leftrightarrow 5-4m=2m-1-4x_2\)
\(\Leftrightarrow x_2=\frac{3-3m}{2}\)
\(\Rightarrow x_1=2m-1-x_2=\frac{7m-5}{2}\)
\(\Rightarrow x_1x_2=\frac{(3-3m)(7m-5)}{4}=m^2-1\)
\(\Rightarrow \left[\begin{matrix} m=\frac{11}{25}\\ m=1\end{matrix}\right.\) (giải pt bậc 2 đơn giản)
Thử lại thấy thỏa mãn. Vậy..........
\(\Rightarrow \)
dùng đelte
Tuấn làm ra lun cho mk xem đi, mk làm rồi nhưng ko biết có đúng ko?