Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Với \(m=2\)thì phương trình trên tương đương với :
\(x^2-4x-4+12-5=0\)
\(< =>x^2-4x+3=0\)
Ta dễ dàng nhận thấy : \(1-4+3=0\)
Nên phương trình sẽ có 2 nghiệm phân biệt là \(\hept{\begin{cases}x_1=1\\x_2=3\end{cases}}\)
b,Để phương trình luôn có nghiệm : \(\Delta\ge0\)
\(< =>\left(-4\right)^2-4\left(-m^2+6m-5\right)\ge0\)
\(< =>16+4m^2-24m+20\)
\(< =>\left(2m\right)^2-2.2.m.6+6^2=\left(2m-6\right)^2\ge0\)(đúng)
c,Theo bất đẳng thức AM-GM thì :
\(x_1^3+x_2^3\ge2\sqrt[2]{x_1^3x_2^3}=2x_1x_2\)
Nên ta được : \(P\ge2x_1x_2\)
Mặt khác theo hệ thức Vi ét thì : \(x_1x_2=-m^2+6m-5\)
\(< =>P\ge-2m^2+12m-10\)
\(< =>P\ge-\left(\sqrt{2}m\right)^2+2\left(-\sqrt{2}m\right)\left(-\sqrt{18}\right)+\left(-\sqrt{18}\right)^2\)
\(< =>P\ge\left[-\sqrt{2}m.\left(-\sqrt{18}\right)\right]^2-28\)
Đẳng thức xảy ra khi và chỉ khi \(m=0\)
Vậy \(Min_P=-28\)khi \(m=0\)
x2 - 4x - m2 + 6m - 5 = 0
Với m = 2 ta có :
x2 - 4x - m2 + 6m - 5 = 0
<=> x2 - 4x - 22 + 2.6 - 5 = 0
<=> x2 - 4x - 4 + 12 - 5 = 0
<=> x2 - 4x + 3 = 0
\(\Delta=b^2-4ac=\left(-4\right)^2-4\cdot1\cdot3=16-12=4\)
\(\Delta>0\)nên phương trình đã cho có hai nghiệm phân biệt
\(x_1=\frac{-b+\sqrt{\Delta}}{2a}=\frac{4+\sqrt{4}}{2}=3\)
\(x_2=\frac{-b-\sqrt{\Delta}}{2a}=\frac{4-\sqrt{4}}{2}=1\)
a/ Bạn tự giải
b/ \(\Delta'=m^2-m^2+3=3>0\Rightarrow\) pt luôn có 2 nghiệm phân biệt
Thei Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-3\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(A=4m^2-2\left(m^2-3\right)=2m^2+6\ge6\)
\(\Rightarrow A_{min}=6\) khi \(m=0\)
Viết lại đề : \(x^2-2mx+m^2-1=0\left(a=1;b=-2m;c=m^2-1\right)\)( 1 )
a, Thay m = 1 vào pt (1) ta đc
\(x^2-2.1x+1^2-1=0\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
Tương ứng vs : \(\left(2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+4=4>0\)(EZ>33)
c, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=2m;x_1x_2=m^2-1\)
Theo bài ra ta có : \(x_1+x_2=12\)Thay vào ta đc
\(\Leftrightarrow2m=12\Leftrightarrow m=6\)
a) \(\Delta=\left(m-1\right)^2-4.\left(-m^2+m-2\right)=5m^2-6m+9=4m^2+\left(m-3\right)^2>0\)
nên phương trình ( 1 ) luôn có hai nghiệm phân biệt
b) PT ( 1 ) có hai nghiệm trái dấu
\(\Leftrightarrow\hept{\begin{cases}\Delta\ge0\\P< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}4m^2+\left(m-3\right)^2\ge0\\-m^2+m-2< 0\end{cases}\Leftrightarrow\forall m}\)
Bài 1 : a ) Tại m = \(\frac{1}{2}\)ta được phương trình mới là :
x2 - 7x = 0
<=> x ( x - 7 ) = 0
<=> x = 0 hoặc x - 7 = 0
<=> x = 0 hoặc x = 7
c) x2 - 2( m + 3 )x + 2m - 1 = 0 ( a = 1 ; b = -2m - 6 ; c = 2m - 1 )
Δ = ( - 2m - 6 )2 - 4 . 1 . ( 2m - 1 )
= 4m2 + 24m + 36
= 4 ( m2 + 6m + 9 )
= 4 ( m + 3 )2 ≥ 0 , với ∀m