K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2023

a: Khi m = -4 thì:

\(x^2-5x+\left(-4\right)-2=0\)

\(\Leftrightarrow x^2-5x-6=0\)

\(\Delta=\left(-5\right)^2-5\cdot1\cdot\left(-6\right)=49\Rightarrow\sqrt{\Delta}=\sqrt{49}=7>0\)

Pt có 2 nghiệm phân biệt:

\(x_1=\dfrac{5+7}{2}=6;x_2=\dfrac{5-7}{2}=-1\)

9 tháng 4 2023

Anh làm câu b nữa ạ, sửa câu b \(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}=\dfrac{3}{2}\)

9 tháng 6 2017

\(\Delta\) = 52 - 4(m - 2) = 25 - 4m + 8 = 33 - 4m

phương trình có 2 nghiệm phân biệt

\(\Leftrightarrow\) \(\Delta\) > 0 \(\Leftrightarrow\) 33 - 4m > 0 \(\Leftrightarrow\) - 4m > - 33 \(\Leftrightarrow\) m < \(\dfrac{33}{4}\)

phương trình có 2 nghiệm dương \(\Leftrightarrow\) \(\left\{{}\begin{matrix}x_1+x_2>0\\x_1.x_2>0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}5>0\\m-2>0\end{matrix}\right.\) \(\Leftrightarrow\) m > 2

ta có : \(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)\) = 3 \(\Leftrightarrow\) \(2\left(\dfrac{\sqrt{x_1}+\sqrt{x_2}}{\sqrt{x_1.x_2}}\right)\) = 3

\(\Leftrightarrow\) \(\dfrac{2\left(\sqrt{x_1}+\sqrt{x_2}\right)}{\sqrt{x_1.x_2}}\) = 3 \(\Leftrightarrow\) \(2\left(\sqrt{x_1}+\sqrt{x_2}\right)\) = \(3\sqrt{x_1.x_2}\)

\(\Leftrightarrow\) \(2\sqrt{x_1}\) + \(2\sqrt{x_2}\) = \(3\sqrt{x_1.x_2}\) \(\Leftrightarrow\) \(\left(2\sqrt{x_1}+2\sqrt{x_2}\right)^2\) = \(\left(3\sqrt{x_1.x_2}\right)^2\)

\(\Leftrightarrow\) 4x1 + 8\(\sqrt{x_1.x_2}\) + 4x2 = 9x1.x2 \(\Leftrightarrow\) 4(x1 + x2) + 8\(\sqrt{x_1.x_2}\) = 9x1.x2

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1.x_2=m-2\end{matrix}\right.\)

thay vào ta có : 20 + 8\(\sqrt{m-2}\) = 9(m-2)

\(\Leftrightarrow\) 20 + 8\(\sqrt{m-2}\) = 9m - 18 \(\Leftrightarrow\) 9m - 38 = 8\(\sqrt{m-2}\)

\(\Leftrightarrow\) (9m - 38)2 = 64 (m - 2) (vì m - 2 > 0)

\(\Leftrightarrow\) 81m2 - 684m + 1444 = 64m - 128

\(\Leftrightarrow\) 81m2 - 748m + 1572 = 0

giải phương trình ta được m = 6 ; m = \(\dfrac{262}{81}\) (đều thỏa mảng điều kiện)

vậy m = 6 ; m = \(\dfrac{262}{81}\) là thỏa mãng điều kiện bài toán

25 tháng 4 2015

làm dài lắm nhưng mình nghĩ kết quả cuối cùng là m = -3

 

25 tháng 4 2015

sory nha mik mới hok lớp 6 không giải bài lớp 9 đc

21 tháng 3 2017

ta thấy pt luôn có no . Theo hệ thức Vi - ét ta có:

x1 + x2 = \(\dfrac{-b}{a}\) = 6

x1x2 = \(\dfrac{c}{a}\) = 1

a) Đặt A = x1\(\sqrt{x_1}\) + x2\(\sqrt{x_2}\) = \(\sqrt{x_1x_2}\)( \(\sqrt{x_1}\) + \(\sqrt{x_2}\) )

=> A2 = x1x2(x1 + 2\(\sqrt{x_1x_2}\) + x2)

=> A2 = 1(6 + 2) = 8

=> A = 2\(\sqrt{3}\)

b) bạn sai đề

13 tháng 3 2018

a,thay m=1 vào phương trình ta được :

x2-4.1x+3.12-3=0

x2-4x=0

x(x-4)=0

x=0

x-4=0⇔x=4

phần b mình chưabiết lm ạ

14 tháng 4 2018

b) \(\Delta'=4m^2-3m^2+3=m^2+3>0\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Theo hệ thức Viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)

Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\\ =16m^2-12m^2+12=4m^2+12\Rightarrow\left|x_1-x_2\right|=\sqrt{4m^2+12}\)

\(\left|\dfrac{x_1+x_2+4}{x_1-x_2}\right|=\left|\dfrac{4m+4}{\sqrt{4m^2+12}}\right|=\left|\dfrac{2m+2}{\sqrt{m^2+3}}\right|\)

Đặt \(y=\left|\dfrac{2m+2}{\sqrt{m^2+3}}\right|\ge0\Rightarrow y^2=\dfrac{\left(2m+2\right)^2}{m^2+3}\Rightarrow y^2m^2+3y^2=4m^2+8m+4\\ \Leftrightarrow\left(y^2-4\right)m^2-8m+3y^2-4=0\)

\(\Delta'=16-\left(3y^2-4\right)\left(y^2-4\right)\ge0\\ \Leftrightarrow-3y^4+16y^2\ge0\\ \Leftrightarrow y^2\le\dfrac{16}{3}\Leftrightarrow0\le y\le\dfrac{4\sqrt{3}}{3}\)

y đạt GTLN \(\Leftrightarrow\Delta'=0\Rightarrow m=\dfrac{4}{y^2-4}=\dfrac{4}{\dfrac{16}{3}-4}=3\)

11 tháng 3 2022

undefined

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

 Theo đ

6 tháng 4 2017

Bài 1/

a/ Ta có: ∆' = (m - 1)2 + 3 + m

= m2 - m + 4 = \(\frac{15}{4}+\left(x-\frac{1}{2}\right)^2>0\)

Vậy PT luôn có 2 nghiệm phân biệt.

Theo vi et ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3-m\end{cases}}\)

Theo đề bài thì

\(x^2_2+x^2_1\ge10\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge10\)

\(\Leftrightarrow\left(2m-2\right)^2-2\left(-3-m\right)\ge0\)

Làm tiếp sẽ ra. Câu còn lại tương tự 

AH
Akai Haruma
Giáo viên
4 tháng 7 2018

Lời giải:

Trước tiên để pt có 2 nghiệm $x_1,x_2$ thì:

\(\Delta=(2-m)^2-4(m+3)>0\)

\(\Leftrightarrow m^2-8m-8>0(*)\)

Áp dụng định lý Viete ta có: \(\left\{\begin{matrix} x_1+x_2=2-m\\ x_1x_2=m+3\end{matrix}\right.\)

ĐK \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{3}{2}\) trước tiên đòi hỏi $x_1,x_2\neq 0$ hay \(m+3\neq 0\Rightarrow m\neq -3\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{3}{2}\)

\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=\frac{3}{2}\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{3}{2}\)

\(\Leftrightarrow \frac{(2-m)^2-2(m+3)}{m+3}=\frac{3}{2}\)

\(\Leftrightarrow \frac{(2-m)^2}{m+3}=\frac{7}{2}\Rightarrow 2(2-m)^2=7(m+3)\)

\(\Rightarrow 2m^2-15m-13=0\)

\(\Rightarrow m=\frac{15\pm \sqrt{329}}{4}\). Kết hợp với đk $(*)$ ta thấy không tồn tại $m$ thỏa mãn

24 tháng 1 2019

Không biết câu 1 đề là m2x hay là mx ta ? Bởi nếu đề như vậy đenta sẽ là bậc 4 khó thành bình phương lắm

Làm câu 2 trước vậy , câu 1 để sau

a, pt có nghiệm \(x=2-\sqrt{3}\)

\(\Rightarrow pt:\left(2-\sqrt{3}\right)^3+a\left(2-\sqrt{3}\right)^2+b\left(2-\sqrt{3}\right)-1=0\)

\(\Leftrightarrow26-15\sqrt{3}+7a-4a\sqrt{3}+2b-b\sqrt{3}-1=0\)

\(\Leftrightarrow\sqrt{3}\left(4a+b+15\right)=7a+2b+25\)

Vì VP là số hữu tỉ

=> VT là số hữu tỉ

Mà \(\sqrt{3}\)là số vô tỉ

=> 4a + b + 15 = 0

=> 7a + 2b + 25 = 0

Ta có hệ \(\hept{\begin{cases}4a+b=-15\\7a+2b=-25\end{cases}}\)

Dễ giải được \(\hept{\begin{cases}a=-5\\b=5\end{cases}}\)

b, Với a = -5 ; b = 5 ta có pt:

\(x^3-5x^2+5x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x^2-4x+1=0\left(1\right)\end{cases}}\)

Giả sử x1 = 1 là 1 nghiệm của pt ban đầu

          x2 ; x3 là 2 nghiệm của pt (1)

Theo Vi-ét \(\hept{\begin{cases}x_2+x_3=4\\x_2x_3=1\end{cases}}\)

Có: \(x_2^2+x_3^2=\left(x_2+x_3\right)^2-2x_2x_3=16-2=14\)

     \(x_2^3+x_3^3=\left(x_2+x_3\right)\left(x^2_2-x_2x_3+x_3^2\right)=4\left(14-1\right)=52\)

\(\Rightarrow\left(x_2^2+x_3^2\right)\left(x_2^3+x_3^3\right)=728\)

\(\Leftrightarrow x_2^5+x_3^5+x_2^2x_3^2\left(x_2+x_3\right)=728\)

\(\Leftrightarrow x^5_2+x_3^5+4=728\)

\(\Leftrightarrow x_2^5+x_3^5=724\)

  Có \(S=\frac{1}{x_1^5}+\frac{1}{x_2^5}+\frac{1}{x_3^5}\)

            \(=1+\frac{x_2^5+x_3^5}{\left(x_2x_3\right)^5}\)

            \(=1+724\)

             \(=725\)

Vậy .........

25 tháng 1 2019

Câu 1 đây , lừa người quá

Giả sử pt có 2 nghiệm x1 ; x2

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=m^2\\x_1x_2=2m+2\end{cases}}\)

\(Do\text{ }m\inℕ^∗\Rightarrow\hept{\begin{cases}S=m^2>0\\P=2m+2>0\end{cases}\Rightarrow}x_1;x_2>0\)       

Lại có \(x_1+x_2=m^2\inℕ^∗\)

Mà x1 hoặc x2 nguyên

Nên suy ra \(x_1;x_2\inℕ^∗\)

Khi đó : \(\left(x_1-1\right)\left(x_2-1\right)\ge0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1\ge0\)

\(\Leftrightarrow2m+2-m^2+1\ge0\)

\(\Leftrightarrow-1\le m\le3\)

Mà \(m\inℕ^∗\Rightarrow m\in\left\{1;2;3\right\}\)

Thử lại thấy m = 3 thỏa mãn

Vậy m = 3