K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 4 2019

\(\Delta'=36+5\left(m+3\right)=5m+51>0\Rightarrow m>-\frac{51}{5}\)

Khi đó theo Viet, pt có 2 nghiệm pb thỏa mãn: \(\left\{{}\begin{matrix}x_1+x_2=\frac{12}{5}\\x_1x_2=\frac{-m-3}{5}\end{matrix}\right.\)

Kết hợp với điều kiện đề bài ta có hệ:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{12}{5}\\2x_1-x_2=1\end{matrix}\right.\) \(\Rightarrow3x_1=\frac{17}{5}\) \(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{17}{15}\\x_2=\frac{12}{5}-x_1=\frac{19}{15}\end{matrix}\right.\)

Mặt khác \(x_1x_2=\frac{-m-3}{5}\Rightarrow\frac{-m-3}{5}=\frac{17}{15}.\frac{19}{15}\)

\(\Rightarrow m=-\frac{458}{45}\) (thỏa mãn)

2 tháng 6 2019

chủ yếu là hỏi câu c hả? tớ làm mỗi đoạn đưa về tổng - tích thôi, bạn giải thấy khó chỗ nào thì hỏi cụ thể nhe ^^

\(\left(x_1+2x_2\right)\left(x_2+2x_1\right)=x_1x_2+2x_2^2+2x_1^2+4x_1x_2=2\left(x_1+x_2\right)^2-4x_1x_2+5x_1x_2\)

đến đây Vi-ét đc òi

2 tháng 6 2019

Gotcha Tokoyami

Có \(\Delta=\left(m-2\right)^2-4\left(-m^2+3m-4\right)\)

          \(=m^2-4m+4+4m^2-12m+16\)

          \(=5m^2-16m+20\)

           \(=5\left(m^2-\frac{16}{5}m+4\right)\)

            \(=5\left[\left(m^2-2.\frac{8}{5}m+\frac{64}{25}\right)+\frac{36}{25}\right]\)

            \(=5\left[\left(m-\frac{8}{5}\right)^2+\frac{36}{25}\right]>0\forall m\)

Nên pt có 2 nghiệm phân biệt với mọi m 

a, Với m = 0 thì pt trở thành

\(x^2+2x-4=0\)

Có \(\Delta'=1+4=5>0\)

\(\Rightarrow\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)

b, Theo hệ thức Vi-et \(x_1x_2=-m^2+3m-4=-\left(m-\frac{3}{2}\right)^2-\frac{7}{4}< 0\)

nên pt có 2 nghiệm trái dấu

c,  Thiếu đề , nhưng làm hộ 1 bước biến đổi như bạn dưới

23 tháng 5 2023

\(x^2-4x+m=0\)

Để pt có 2 nghiệm \(x_1,x_2\Leftrightarrow\Delta\ge0\Leftrightarrow\left(-4\right)^2-4m\ge0\Leftrightarrow m\le4\)

Theo Vi-ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=m\end{matrix}\right.\)

Ta có :

\(2x_1+x_2=7\)

\(\Leftrightarrow\left\{{}\begin{matrix}2=\dfrac{x_1+x_2}{2}\\2x_1+x_2=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1+x_2=4\\2x_1+x_2=7\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=3\\x_2=1\end{matrix}\right.\)

Thay \(x_1x_2=m\Leftrightarrow m=3.1=3\left(tmdk\right)\)

Vậy m = 3 thì pt có 2 nghiệm \(x_1,x_2\) thỏa mãn \(2x_1+x_2=7\)

4 tháng 8 2017

1.Ta có \(\Delta=4m^2-4\left(m^2-m-3\right)=4m+12\)

Để phương trình có 2 nghiệm phân biệt \(\Rightarrow\Delta>0\Rightarrow4m+12>0\Rightarrow m>-3\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m-3\end{cases}}\)

a. Phương trình có 2 nghiệm trái dấu \(\Rightarrow x_1.x_2< 0\Rightarrow m^2-m-3< 0\Rightarrow\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

Vậy \(\frac{1-\sqrt{13}}{2}< m< \frac{1+\sqrt{13}}{2}\)

b. Phương trình có 2 nghiệm phân biệt dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2=2m>0\\x_1.x_2=m^2-m-3>0\end{cases}\Leftrightarrow\hept{\begin{cases}m>0\\m< \frac{1-\sqrt{13}}{2}\end{cases}\left(l\right);\hept{\begin{cases}m>0\\m>\frac{1+\sqrt{13}}{2}\end{cases}\Leftrightarrow m>\frac{1+\sqrt{13}}{2}}}}\)

Vậy \(m>\frac{1+\sqrt{13}}{2}\)

2. a.Ta có \(\Delta=\left(2m-1\right)^2+4m=4m^2-4m+1+4m=4m^2+1\)

Ta thấy \(\Delta=4m^2+1>0\forall m\)

Vậy phương trình luôn có 2 nghiejm phân biệt với mọi m

b. Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=1-2m\\x_1.x_2=-m\end{cases}}\)

Để \(x_1-x_2=1\Leftrightarrow\left(x_1-x_2\right)^2=1\Leftrightarrow\left(x_1+x2\right)^2-4x_1x_2=1\)

\(\Leftrightarrow\left(1-2m\right)^2-4.\left(-m\right)=1\Leftrightarrow4m^2-4m+1+4m=1\)

\(\Leftrightarrow m^2=0\Leftrightarrow m=0\)

Vậy \(m=0\)thoă mãn yêu cầu bài toán