K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
11 tháng 3 2023

a. Em tự giải

b. 

\(\Delta=4-3\left(m+5\right)>0\Rightarrow m< -\dfrac{11}{3}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{4}{3}\\x_1x_2=\dfrac{m+5}{3}\end{matrix}\right.\)

Để biểu thức đề bài xác định \(\Rightarrow x_1x_2\ne0\Rightarrow m\ne-5\)

\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{4}{7}\) \(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{4}{7}\)

\(\Leftrightarrow\dfrac{4}{m+5}=\dfrac{4}{7}\)

\(\Rightarrow m+5=7\)

\(\Rightarrow m=2\) (ktm)

Vậy ko tồn tại m thỏa mãn yêu cầu đề bài

NV
11 tháng 3 2023

Có cả điều kiện delta lúc đầu nữa em, \(m< -\dfrac{11}{3}\) mà \(m=2>-\dfrac{11}{3}\) nên không thỏa mãn

13 tháng 3 2018

a,thay m=1 vào phương trình ta được :

x2-4.1x+3.12-3=0

x2-4x=0

x(x-4)=0

x=0

x-4=0⇔x=4

phần b mình chưabiết lm ạ

14 tháng 4 2018

b) \(\Delta'=4m^2-3m^2+3=m^2+3>0\Rightarrow\) pt luôn có 2 nghiệm phân biệt

Theo hệ thức Viet ta có : \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)

Ta có: \(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\\ =16m^2-12m^2+12=4m^2+12\Rightarrow\left|x_1-x_2\right|=\sqrt{4m^2+12}\)

\(\left|\dfrac{x_1+x_2+4}{x_1-x_2}\right|=\left|\dfrac{4m+4}{\sqrt{4m^2+12}}\right|=\left|\dfrac{2m+2}{\sqrt{m^2+3}}\right|\)

Đặt \(y=\left|\dfrac{2m+2}{\sqrt{m^2+3}}\right|\ge0\Rightarrow y^2=\dfrac{\left(2m+2\right)^2}{m^2+3}\Rightarrow y^2m^2+3y^2=4m^2+8m+4\\ \Leftrightarrow\left(y^2-4\right)m^2-8m+3y^2-4=0\)

\(\Delta'=16-\left(3y^2-4\right)\left(y^2-4\right)\ge0\\ \Leftrightarrow-3y^4+16y^2\ge0\\ \Leftrightarrow y^2\le\dfrac{16}{3}\Leftrightarrow0\le y\le\dfrac{4\sqrt{3}}{3}\)

y đạt GTLN \(\Leftrightarrow\Delta'=0\Rightarrow m=\dfrac{4}{y^2-4}=\dfrac{4}{\dfrac{16}{3}-4}=3\)

1 tháng 9 2018

a) để phương trình có 2 nghiệm : \(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\Delta'\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-3\ne0\\\left(m+2\right)^2-\left(m-3\right)\left(m+1\right)\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\6m+7\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{7}{6}\end{matrix}\right.\)

thay \(x_1=2\) vào phương trình ta có :

\(4\left(m-3\right)-4\left(m+2\right)+m+1=0\Leftrightarrow m=19\)

áp dụng hệ thức vi ét ta có : \(x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}=\dfrac{2\left(21\right)}{16}=\dfrac{21}{8}\)

\(\Rightarrow x_2=\dfrac{21}{8}-x_1=\dfrac{21}{8}-2=\dfrac{5}{8}\)

vậy ....................................................................................................

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+2\right)}{m-3}\\x_1x_2=\dfrac{m+1}{m-3}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=10\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=10\Leftrightarrow\dfrac{2\left(m+2\right)}{m-3}:\dfrac{m+1}{m-3}=10\)

\(\Leftrightarrow\dfrac{2m+4}{m+1}=10\Leftrightarrow2m+4=10m+10\Leftrightarrow m=\dfrac{-3}{4}\left(L\right)\)

vậy không có m thỏa mãn điều kiện bài toán .

1 tháng 9 2018

câu 2) a) để phương trình có 2 nghiệm cùng dấu \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\Delta'\ge0\\p>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-2\ne0\\\left(m+1\right)^2-\left(m-2\right)\left(m-1\right)\ge0\\\dfrac{m-1}{m-2}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\5m-1\ge0\\\left(m-1\right)\left(m-2\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne2\\m\ge\dfrac{1}{5}\\\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>2\) vậy \(m>2\)

b) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-2\left(m+1\right)}{m-2}\\x_1x_2=\dfrac{m-1}{m-2}\end{matrix}\right.\)

ta có : \(x_1^3+x_2^3=64\Leftrightarrow\left(x_1+x_2\right)^3-3\left(x_1x_2\right)\left(x_1+x_2\right)=64\)

\(\left(\dfrac{2m+2}{2-m}\right)^3+6\left(\dfrac{m-1}{m-2}\right)\left(\dfrac{m+1}{m-2}\right)=64\)

\(\Leftrightarrow\dfrac{\left(-2m-2\right)^3}{\left(m-2\right)^3}+\dfrac{6\left(m-1\right)\left(m+1\right)\left(m-2\right)}{\left(m-2\right)^3}=64\)

\(\Leftrightarrow\dfrac{-8m^3-24m^2-24m-8+6m^2-12m^3-6m+12}{m^2-6m^2+12m-8}=64\)

\(\Leftrightarrow\dfrac{-20m^3-18m^2-30m+4}{m^3-6m^2+12m-8}=64\)

\(\Leftrightarrow84m^3-402m^2+798m-516=0\)

giải nốt nha .

NV
1 tháng 3 2019

\(\Delta=25-4\left(m+4\right)=9-4m>0\Rightarrow m< \dfrac{9}{4}\)

Khi đó \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m+4\end{matrix}\right.\)

a/ \(\left\{{}\begin{matrix}3x_1+4x_2=6\\x_1+x_2=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=14\\x_2=-9\end{matrix}\right.\)

\(\Rightarrow m+4=x_1x_2=-126\Rightarrow m=-130\)

b/ \(x_1;x_2\ne0\Rightarrow m\ne-4\)

\(\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=-3\Leftrightarrow\dfrac{x_1^2+x_2^2}{x_1x_2}=-3\Leftrightarrow\dfrac{\left(x_1+x_2\right)^2-2x_1x_2}{x_1x_2}=-3\)

\(\Leftrightarrow\dfrac{25-2\left(m+4\right)}{m+4}=-3\Leftrightarrow17-2m=-3m-12\Rightarrow m=-29\)

3 tháng 6 2019

\(\Delta^`\ge0\)

\(\Leftrightarrow m^2-\left(m^2-2\right).2\ge0\)

\(\Leftrightarrow4-m^2\ge0\)

\(\Leftrightarrow4\ge m^2\)

\(\Leftrightarrow4\ge m^2\)

\(\Leftrightarrow-2\le m\le2\)

3 tháng 6 2019

Theo hệ thức Viet có:

\(\hept{\begin{cases}x_1+x_2=m\\x_1.x_2=\frac{m^2-2}{2}\end{cases}}\)

\(\Rightarrow A=\left|2x_1.x_2-x_1-x_2-4\right|=\left|m^2-m-6\right|=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|\)

Có:

\(\left(m-\frac{1}{2}\right)^2\le\left(-2-\frac{1}{2}\right)^2=6,25\)

\(\Rightarrow A=\left|\left(m-\frac{1}{2}\right)^2-6,25\right|=6,25-\left(m-\frac{1}{2}\right)^2\le6,25\)

\(A=6,25\Leftrightarrow m=\frac{1}{2}\left(tm\right)\)

KL:..............................................

31 tháng 7 2018

a) để phương trình có 1 nghiệm bằng 2

\(\Leftrightarrow m2^2-2.2-4m-1=0\Leftrightarrow-5=0\Rightarrow m\in\varnothing\)

b) để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\\Delta'>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\1^2+m\left(4m+1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\4m^2+m+1\end{matrix}\right.\) \(\Leftrightarrow m\ne0\)

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{m}\\x_1x_2=\dfrac{-4m-1}{m}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x_2=\dfrac{2}{m}\\2\left(\dfrac{2}{3m}\right)^2=\dfrac{-4m-1}{m}\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

c) ta có : \(x_1< 2< x_2\Leftrightarrow\)\(x_1< mx_1x_2< x_2\Leftrightarrow\dfrac{1}{x_2}< m< \dfrac{1}{x_1}\)

\(\Leftrightarrow\dfrac{m}{1-\sqrt{4m^2+m+1}}< m< \dfrac{m}{1+\sqrt{4m^2+m+1}}\)

\(\Leftrightarrow\dfrac{m}{1-\sqrt{4m^2+m+1}}< m< \dfrac{m}{1+\sqrt{4m^2+m+1}}\)

\(\Leftrightarrow m< 0\) vậy \(m< 0\)

d) áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2}{m}\\x_1x_2=\dfrac{-4m-1}{m}\end{matrix}\right.\)

ta có : \(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{x_1+x_2}{x_1x_2}=\dfrac{2}{m}.\left(\dfrac{m}{-4m-1}\right)=2\)

\(\Leftrightarrow\dfrac{2}{-4m-1}=2\Leftrightarrow m=\dfrac{-1}{2}\) vậy \(m=\dfrac{-1}{2}\)

25 tháng 4 2015

làm dài lắm nhưng mình nghĩ kết quả cuối cùng là m = -3

 

25 tháng 4 2015

sory nha mik mới hok lớp 6 không giải bài lớp 9 đc

AH
Akai Haruma
Giáo viên
24 tháng 3 2019

Lời giải:

Để PT có 2 nghiệm phân biệt $x_1,x_2$ thì:

\(\Delta'=(m+2)^2-(m^2+m+3)>0\)

\(\Leftrightarrow 3m+1>0\Leftrightarrow m> \frac{-1}{3}\)

Áp dụng định lý Vi-et: \(\left\{\begin{matrix} x_1+x_2=2(m+2)\\ x_1x_2=m^2+m+3\end{matrix}\right.\)

\(x_1x_2=m^2+m+3=(m+\frac{1}{2})^2+\frac{11}{4}\neq 0, \forall m>\frac{-1}{3}\) nên $x_1,x_2\neq 0$ với mọi \(m> \frac{-1}{3}\).

Khi đó:

\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=1\)

\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=4\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=4\)

\(\Leftrightarrow \frac{(x_1+x_2)^2}{x_1x_2}=6\Rightarrow (x_1+x_2)^2=6x_1x_2\)

\(\Leftrightarrow 4(m+2)^2=6(m^2+m+3)\)

\(\Leftrightarrow 2m^2-10m+2=0\)

\(\Leftrightarrow m=\frac{5\pm \sqrt{21}}{2}\) (thỏa mãn)

8 tháng 5 2018

xét pt \(x^2-\left(m-1\right)x-m^2+m-1=0\)   \(\left(1\right)\)

từ (1) có  \(\Delta=\left[-\left(m-1\right)\right]^2-4.\left(-m^2+m-1\right)\)

\(\Delta=m^2-2m+1+4m^2-4m+4\)

\(\Delta=5m^2-6m+5\)

\(\Delta=5\left(m^2-\frac{6}{5}m+1\right)\)

\(\Delta=5\left[m^2-2.\frac{3}{5}m+\frac{9}{25}-\frac{9}{25}+1\right]\)

\(\Delta=5\left[\left(m-\frac{3}{5}\right)^2+\frac{16}{25}\right]>0\forall m\)

\(\Rightarrow pt\left(1\right)\)  luôn có 2 nghiệm phân biệt \(\forall m\)

ta có vi - ét \(\hept{\begin{cases}x_1+x_2=m-1\\x_1.x_2=-m^2+m-1\end{cases}}\)

theo bài ra \(\left|x_2\right|-\left|x_1\right|=2\)

\(\Leftrightarrow\left(\left|x_1\right|+\left|x_2\right|\right)=4\)

\(\Leftrightarrow x_1^2+x_2^2+2\left|x_1.x_2\right|=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2+2\left|x_1.x_2\right|=4\)

\(\Leftrightarrow\left(m-1\right)^2-2\left(-m^2+m-1\right)+2\left|x_1.x_2\right|=4\)

\(\Leftrightarrow m^2-2m+1+2m^2-2m+2+2\left|x_1.x_2\right|=4\)

\(\Leftrightarrow3m^2-4m+3+2\left|x_1.x_2\right|=4\)

cái này đến đây xét ra 2 trường hợp  rồi đối chiếu với ĐKXĐ là xong