Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu 1:
Áp dụng hệ thức Vi-ét ta đc: \(x_1+x_2=2m+1;x_1x_2=m^2-3\)
có : \(x_1^2+x_2^2-\left(x_1+x_2\right)=8\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=8\Rightarrow\left(2m+1\right)^2-2.\left(m^2-3\right)-\left(2m+1\right)=8\)
\(\Rightarrow2m^2+4m+1-2m^2+6-2m-1=8\Rightarrow2m=2\Rightarrow m=1\)
câu 2 mk k bik lm nha
1.
\(\Delta'=\left(-m\right)^2-1.\left(2m-3\right)=m^2-2m+3>0\forall m\)
Với \(\Delta'>0\forall m\)thì phương trình có hai nghiệm là x1, x2 ,theo Vi - et ta có :
x1 + x2 = \(-\frac{-m}{1}=m\) ; x1x2 =\(\frac{2m-3}{1}=2m-3\)
Thay x1 + x2 = m; x1x2 = 2m - 3 vào bt A = x12 + x22 ta có :
A = x12 + x22 + 2x1x2 - 2x1x2
A = ( x1 + x2 + 2x1x2 ) - 2x1x2
A = ( x1 + x2 )2 - 2x1x2
A = m2 - 2.( 2m - 3 )
A = m2 - 4m + 6
\(\Delta'=\left(-2\right)^2-1.6=-2< 0\)
Vì \(\Delta'< 0\Rightarrow\) không có giá trị nào của m để bt A đạt giá trị nhỏ nhất
\(a)\) Khi m=1 pt \(\Leftrightarrow\)\(x^2-2x=0\)\(\Leftrightarrow\)\(x\left(x-2\right)=0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy pt có hai nghiệm phân biệt \(\hept{\begin{cases}x_1=0\\x_2=2\end{cases}}\) khi m=1
\(b)\)\(\Delta'=\left(-m\right)^2-\left(2m-2\right)=m^2-2m+2=\left(m-1\right)^2+1>0\)
Vậy pt (1) luôn có hai nghiệm phân biệt \(x_1,x_2\) với mọi m
Ta có : \(x_1^2+x_2^2=12\)\(\Leftrightarrow\)\(\left(x_1+x_2\right)^2-2x_1x_2=12\) (*)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=2m-2\end{cases}}\)
(*) \(\Leftrightarrow\)\(\left(2m\right)^2-2\left(2m-2\right)=12\)
\(\Leftrightarrow\)\(4m^2-4m-8=0\)
\(\Leftrightarrow\)\(m^2-m-2=0\) (2)
Có \(\Delta=\left(-1\right)^2-4.\left(-2\right)=9>0\)
pt (2) có hai nghiệm phân biệt \(\hept{\begin{cases}m_1=\frac{-\left(-1\right)+\sqrt{9}}{2}\\m_2=\frac{-\left(-1\right)-\sqrt{9}}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}m_1=2\\m_2=-1\end{cases}}}\)
Vậy để \(x_1^2+x_2^2=12\) thì \(\orbr{\begin{cases}m=-1\\m=2\end{cases}}\)
\(c)\) Ta có : \(A=\frac{6\left(x_1+x_2\right)}{x_1^2+x_2^2+4\left(x_1+x_2\right)}=\frac{6\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2+4\left(x_1+x_2\right)-2x_1x_2}=\frac{6.2m}{\left(2m\right)^2+4.2m-2\left(2m-2\right)}\)
\(A=\frac{12m}{4m^2+4m+4}=\frac{3m}{m^2+m+1}\)\(\Leftrightarrow\)\(Am^2+\left(A-3\right)m+A=0\)
+) Nếu \(A=0\) thì \(m=0\)
+) Nếu \(A\ne0\) thì pt có nghiệm \(\Leftrightarrow\)\(\Delta\ge0\)
\(\Leftrightarrow\)\(\left(A-3\right)^2-4A.A\ge0\)
\(\Leftrightarrow\)\(-3A^2-6A+9\ge0\)
\(\Leftrightarrow\)\(A^2+2A-3\le0\)
\(\Leftrightarrow\)\(\left(A+1\right)^2\le4\)
\(\Leftrightarrow\)\(-3\le A\le1\)
\(\Rightarrow\)\(A\le1\) dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{3m}{m^2+m+1}=1\)\(\Leftrightarrow\)\(m=1\)
Vậy GTLN của \(A=1\) khi \(m=1\)
a) \(x^3_1+x_2^3=\left(x_1+x_2\right)\left(x^2_1-x_1x_2+x^2_2\right)=\left(x_1+x_2\right)\left(x^2_1+2x_1x_2-3x_1x_2+x^2_2\right).\)(1)
Áp dụng Đen-ta: \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=1\end{cases}}\)
\(\left(x_1+x_2\right)^2=25.\)
<=> \(x^2_1+x_2^2+2x_1x_2=25.\)
(1) 5.(25-3)=5.22=110
Câu 2:
\(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=1\end{cases}}\)
ta có:\(x^2_1+x^2_2+2x_1x_2=25.\Rightarrow x^2_1+x^2_2=23\Rightarrow\left(x^2_1+x^2_2\right)^2=529.\)
\(\Leftrightarrow x^4_1+x^4_2+2x^2_1x^2_2=529.\)
\(\Rightarrow x^4_1+x^4_2=527\)
học tốt
hệ thức vi ét và biệt thức denta để làm gì hả bạn ?
do` bạn ngu hay` mình quá víp ? t í ch cho mình rồi mik làm ,
Hệ thức vi-et:
\(\left\{{}\begin{matrix}x_1+x_2=-\frac{5}{3}\\x_1x_2=-2\\x_1^2+x^2_2=\frac{61}{9}\end{matrix}\right.\)
\(A=\left(x_1-1\right)\left(x_2-1\right)+x_1^2+x_2^2=x_1x_2-x_1-x_2+1+x_1^2+x_2^2\)
\(A=x_1x_2-\left(x_1+x_2\right)+1+x_1^2+x_2^2=-2-\left(-\frac{5}{3}\right)+1+\frac{61}{9}=\frac{67}{9}\)