K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2017

áp dụng hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{9}{2}\\x_1x_2=\dfrac{1}{2}\end{matrix}\right.\)

1) \(x_1x_2^2+x_2x_1^2=x_1x_2\left(x_1+x_2\right)\) (1)

thay vào ta có : (1) \(\Leftrightarrow\) \(\dfrac{9}{2}.\dfrac{1}{2}=\dfrac{9}{4}\) vậy \(x_1x_2^2+x_2x_1^2=\dfrac{9}{4}\)

2) \(\dfrac{1}{x_1^3}+\dfrac{1}{x_2^2}\) = \(\dfrac{x_1^3+x^3_2}{\left(x_1x_2\right)^3}\) = \(\dfrac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{\left(x_1x_2\right)^3}\) (2)

thay vào ta có : (2) \(\Leftrightarrow\) \(\dfrac{\left(\dfrac{9}{2}\right)^3-3\left(\dfrac{1}{2}\right)\left(\dfrac{9}{2}\right)}{\left(\dfrac{1}{2}\right)^3}\)

= \(675\)

28 tháng 6 2017

cho c nghìn like

21 tháng 3 2017

Câu c làm tương tự, mẫu số nhân ra và nhóm lại theo dạng: x1+x2 và x1.x2

21 tháng 3 2017

TOÁN HỌC

Toán lớp 2

Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 92.luyện tập (trang 96 sgk)

Bài 1: Số ?,Bài 2: Tính (theo mẫu),Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ? Bài 4: Viết số thích hợp vào ô trống (theo mẫu),Bài 5: Viết số thích hợp vào ô trống (theo mẫu):

  • Lý thuyết, bài 1, bài 2, bài 3 tiết 93.bảng nhân 3 (trang 97sgk)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 tiết 94.luyện tập (trang 98 sgk)
  • Lý thuyết, bài 1, bài 2, bài 3 tiết 95. bảng nhân 4 (trang 99 sgk)
  • Bài 1, bài 2, bài 3, bài 4 tiết 96.luyện tập (trang 100 sgk)

Xem thêm: CHƯƠNG V: PHÉP NHÂN VÀ PHÉP CHIA

Bài 1: Số ?

Bài 2: Tính (theo mẫu)

2cm x 3 = 6cm                          2kg x 4 =

2cm x 5 =                                2kg x 6 = 

2dm x 8 =                                2kg x 9 =

Bài 3: Mỗi xe đạp có hai bánh xe. Hỏi 8 xe đạp có bao nhiêu bánh xe ?

Bài 4: Viết số thích hợp vào ô trống (theo mẫu):

Bài 5: Viết số thích hợp vào ô trống (theo mẫu):

Bài giải:

Bài 1:

Bài 2:

2cm x 3 = 6cm                                2kg x 4 = 8kg

2cm x 5 = 10cm                               2kg x 6 = 12kg 

2dm x 8 = 16cm                               2kg x 9 = 18kg

Bài 3: 

Số bánh xe của 78 xe đạp là:

2 x 8 = 16 (bánh xe)

Đáp số: 16 bánh xe.

Bài 4: Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống còn lại là: 12, 18, 20, 14, 10, 16, 4.

Bài 5:

Hướng dẫn: Điền lần lượt từ trái sang phải vào các ô trống các số là: 10, 14, 18, 20, 4.

Bài viết liên quan

Các bài khác cùng chuyên mục

  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 180,181 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 4 trang 177, 178 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4 trang 178,179 sgk toán lớp 2 (12/01)
  • Bài 1, bài 2, bài 3, bài 4, bài 5 trang 181 sgk toán lớp 2 (12/01)



Xem thêm tại: http://loigiaihay.com/bai-1-bai-2-bai-3-bai-4-bai-5-tiet-92luyen-tap-c114a15865.html#ixzz4bgVSXCQi

5 tháng 6 2018

1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0

Nếu x-5=0 suy ra x=5

Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0

Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0

Suy ra x=1 hoặc x=6.

4 tháng 7 2020

bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)

\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)

\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)

thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)

\(\left(++\right)< =>x-5=0< =>x=5\)

Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)

6 tháng 6 2018
https://i.imgur.com/Uhbfb24.jpg
6 tháng 6 2018

mơn

17 tháng 5 2017

Hỏi đáp Toán

28 tháng 4 2019

a, Ta có \(\Delta'=\left(m-1\right)^2-m^2+9\)

                    \(=m^2-2m+1-m^2+9\)

                     \(=10-2m\)

Để pt có nghiệm kép thì \(\Delta'=0\Leftrightarrow m=5\)

Với m = 5 thì pt có nghiệm kép \(x=\frac{-b'}{a}=\frac{m-1}{1}=\frac{5-1}{1}=4\)

b,Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow m\le5\)

Theo Vi-ét \(\hept{\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-9\end{cases}}\)

Ta có \(\frac{x_1^2+x_2^2}{2}-x_1-x_2=\frac{\left(x_1+x_2\right)^2-2x_1x_2}{2}-\left(x_1+x_2\right)\)

                                            \(=\frac{\left(x_1+x_2\right)^2}{2}-x_1x_2-\left(x_1+x_2\right)\)

                                             \(=\frac{4\left(m-1\right)^2}{2}-m^2+9-2\left(m-1\right)\)

                                             \(=2\left(m-1\right)^2-m^2+9-2m+2\)

                                               \(=2m^2-4m+2-m^2+9-2m+2\)

                                                \(=m^2-6m+13\)

                                                \(=\left(m-3\right)^2+4\ge4\)

Dấu "=" xảy ra <=> m = 3 (tm)

28 tháng 4 2019

a, Với \(m=\sqrt{2}\) thì pt trở thành

\(x^2-2x-2\sqrt{2}+1=0\)

Ta có \(\Delta'=1+2\sqrt{2}-1=2\sqrt{2}>0\)

Nên pt có 2 nghiệm phân biệt 

\(\orbr{\begin{cases}x=1-\sqrt{2\sqrt{2}}\\x=1+\sqrt{2\sqrt{2}}\end{cases}}\)

b, Ta có \(\Delta'=1+2m-1=2m\)

Để pt có nghiệm thì \(\Delta'\ge0\Leftrightarrow m\ge0\)

Theo hệ thức Vi-ét \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-2m+1\end{cases}}\)

Ta có \(x_2^2\left(x_1^2-1\right)+x_1^2\left(x_2^2-1\right)=8\)

\(\Leftrightarrow\left(x_1x_2\right)^2-x_2^2+\left(x_1x_2\right)^2-x_1^2=8\)

\(\Leftrightarrow2\left(x_1x_2\right)^2-\left(x_1+x_2\right)^2+2x_1x_2=8\)

\(\Leftrightarrow2\left(-2m+1\right)^2-2^2+2\left(-2m+1\right)=8\)

\(\Leftrightarrow2\left(4m^2-4m+1\right)-4-4m+2=8\)

\(\Leftrightarrow8m^2-8m+2-4m-10=0\)

\(\Leftrightarrow8m^2-12m-8=0\)

\(\Leftrightarrow2m^2-3m-2=0\)

\(\Leftrightarrow\left(m-2\right)\left(2m+1\right)=0\)

\(\Leftrightarrow m=2\left(Do\cdot m>0\right)\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 5:

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m-1)^2-m^2\geq 0$

$\Leftrightarrow (m-1-m)(m-1+m)\geq 0$

$\Leftrightarrow 1-2m\geq 0\Leftrightarrow m\leq \frac{1}{2}(*)$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m-1)\\ x_1x_2=m^2\end{matrix}\right.\)

Khi đó:

$(x_1-x_2)^2+6m=x_1-2x_2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2+6m=(x_1+x_2)-3x_2$

$\Leftrightarrow 4(m-1)^2-4m^2+6m=2(m-1)-3x_2$

$\Leftrightarrow 4m-6=3x_2$

$\Leftrightarrow x_2=\frac{4}{3}m-2$

$x_1=2(m-1)-x_2=\frac{2}{3}m$

Suy ra:

$x_1x_2=m^2$

$\Leftrightarrow \frac{2}{3}m(\frac{4}{3}m-2)=m^2$

$\Leftrightarrow m(8m-12-9m)=0$

$\Leftrightarrow m(-m-12)=0$

$\Leftrightarrow m=0$ hoặc $m=-12$. Theo $(*)$ ta thấy 2 giá trị này đều thỏa mãn.

AH
Akai Haruma
Giáo viên
13 tháng 7 2020

Bài 4:

Để pt có 2 nghiệm thì $\Delta'=4-2(2m^2-1)\geq 0$

$\Leftrightarrow m^2-1\leq 0\Leftrightarrow -1\leq m\leq 1$

Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{2m^2-1}{2}\end{matrix}\right.\)

Khi đó:

$2x_1^2+4mx_2+2m^2-1\geq 0$

$\Leftrightarrow (2x_1^2-4mx_1+2m^2-1)+4mx_1+4mx_2\geq 0$

$\Leftrightarrow 0+4m(x_1+x_2)\geq 0$

$\Leftrightarrow 4m. 2\geq 0$

$\Leftrightarrow m\geq 0$

Kết hợp với điều kiện $-1\leq m\leq 1$ suy ra $0\leq m\leq 1$ thì ycđb được thỏa mãn.