\(\frac{1}{4}\)x

 ...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2018

1) Tìm x

\(2^x+2^{x+4}=544\)

\(\Leftrightarrow2^x\left(1+2^4\right)=544\)

\(\Leftrightarrow2^x.17=544\)

\(\Leftrightarrow2^x=32=2^5\)

<=>x=5

2) \(\frac{x}{z}=\frac{z}{y}\Rightarrow\hept{\begin{cases}\frac{x^2}{z^2}=\frac{z^2}{y^2}=\frac{x^2+z^2}{z^2+y^2}\\z^2=xy\end{cases}}\Rightarrow\frac{x^2+z^2}{z^2+y^2}=\frac{z^2}{y^2}=\frac{xy}{y^2}=\frac{x}{y}\)

24 tháng 10 2018

c)Câu hỏi của Hoàng Nhật Mai - Toán lớp 7 - Học toán với OnlineMath

Bạn tham khảo bài làm ở link này nhé!!! Chúc bạn học tốt!!!

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Bài 1:

$20092009^{10}=(2009.10000+2009)^{10}=(2009.10001)^{10}$

$> (2009.2009)^{10}=(2009^2)^{10}=2009^{20}$

Vậy $20092009^{10}> 2009^{20}$

AH
Akai Haruma
Giáo viên
20 tháng 9 2020

Bài 2: Để bài yêu cầu tính tỷ số nên mình nghĩ bạn đang viết đề thì phải?

Bài 3: Để bài cần bổ sung thêm điều kiện $x,y$ tự nhiên/ nguyên/..... chứ nếu $x,y$ là số thực thì có vô số giá trị bạn nhé.

Bài 4:

Vì $x_1,x_2,...,x_n$ nhận giá trị $-1$ hoặc $1$ nên $x_1x_2,x_2x_3,...,x_nx_1$ cũng nhận giá trị $-1,1$

Xét $n$ số hạng $x_1x_2,x_2x_3,...,x_nx_1$. Vì $n$ số hạng này có tổng bằng $0$ nên trong đây số số có giá trị $1$ phải bằng số số có giá trị $-1$ ($=\frac{n}{2}$)

$\Rightarrow n\vdots 2$. Ta có:

$x_1x_2.x_2x_3.x_3.x_4....x_1x_n=(x_1x_2...x_n)^2=(-1)^{\frac{n}{2}}.1^{\frac{n}{2}}=(-1)^{\frac{n}{2}}$

Nếu $\frac{n}{2}$ lẻ thì $(x_1x_2..x_n)^2=-1< 0$ (vô lý). Do đó $\frac{n}{2}$ chẵn.

Hay $n\vdots 4$

kết bạn ko

21 tháng 5 2019

( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0

vậy ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\ge\) 0

mà ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\le\)0

suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0

do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)

2 tháng 12 2018

\(x^2_2=x_1.x_3\Rightarrow\frac{x_2}{x_1}=\frac{x_3}{x_2},x^2_3=x_2.x_4\Rightarrow\frac{x_4}{x_3}=\frac{x_3}{x_2}\)\(\Rightarrow\frac{x_2}{x_1}=\frac{x_3}{x_2}=\frac{x_4}{x_3}\)

áp dụng t.c dãy tỉ số bằng nhau ta có:

\(\frac{x_2}{x_1}=\frac{x_3}{x_2}=\frac{x_4}{x_3}=\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\Rightarrow\left(\frac{x_2}{x_1}\cdot\frac{x_3}{x_2}\cdot\frac{x_4}{x_3}\right)=\left(\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\right)^3\Rightarrow\frac{x_4}{x_1}=\left(\frac{x_2+x_3+x_4}{x_1+x_2+x_3}\right)^3\)

\(\Rightarrow\frac{x_1}{x_4}=\left(\frac{x_1+x_2+x_3}{x_2+x_3+x_4}\right)^3\left(đpcm\right)\)

3 tháng 12 2018

Từ \(X_2^2=X_1.X_3\)\(\Rightarrow\frac{X_1}{X_2}=\frac{X_2}{X_3}\)(1)

Từ \(X_3^2=X_2.X_4\)\(\Rightarrow\frac{X_2}{X_3}=\frac{X_3}{X_4}\)(2)

Từ (1) và (2) \(\Rightarrow\frac{X_1}{X_2}=\frac{X_2}{X_3}=\frac{X_3}{X_4}=\frac{X_1+X_2+X_3}{X_2+X_3+X_4}\)

\(\Rightarrow\left(\frac{X_1}{X_2}\right)^3=\left(\frac{X_1+X_2+X_3}{X_2+X_3+X_4}\right)^3\)(1)

Từ \(\left(\frac{X_1}{X_2}\right)^3=\frac{X_1}{X_2}.\frac{X_1}{X_2}.\frac{X_1}{X_2}=\frac{X_1}{X_2}.\frac{X_2}{X_3}.\frac{X_3}{X_4}=\frac{X_1}{X_4}\)(2)

Từ (1) và (2) \(\Rightarrowđpcm\)

13 tháng 12 2019

Ta có: \(2n\)\(⋮\)\(2\)=> 2n là số chẵn

 \(\Rightarrow\left(x_1p-y_1q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\)\(\left(x_2p-y_2q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\);.... ;  \(\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

\(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

Mà \(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\le0\)\(m,n\inℕ^∗\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x_1p-y_1q\right)^{2n}=0\\......\\\left(x_mp-y_mq\right)^{2n}=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p-y_1q=0\\.....\\x_mp-y_mq=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.....\\x_mp=y_mq\end{cases}}\)\(\Rightarrow x_1p+x_2p+....+x_mp=y_1q+y_2q+...+y_mq\)

\(\Rightarrow p\left(x_1+x_2+...+x_m\right)=q\left(y_1+y_2+...+y_m\right)\)

\(\Rightarrow\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)(đpcm)