K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

P(6)=73

P(7)=99

P(8)=129

P(9)=163

P(10)=201

đúng thì k nha

2 tháng 12 2016

Đặt \(A\left(x\right)=2x^2+1;B\left(x\right)=P\left(x\right)-A\left(x\right)\)

Theo đề bài ta có: \(P_{\left(1\right)}=3;P_{\left(2\right)}=9;P_{\left(3\right)}=19;P_{\left(4\right)}=33;P_{\left(5\right)}=51\)

\(\Rightarrow B_{\left(1\right)}=B_{\left(2\right)}=B_{\left(3\right)}=B_{\left(4\right)}=B_{\left(5\right)}=0\)

Do x5 có hệ số là 1 nên

\(B\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)\)

\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+2x^2+1\)

Giờ chỉ việc thế giá trị x vô là có đáp án nhé

17 tháng 10 2015

Mình thì tự học trước kì 2 nhưng mấy tuần này bận quá

24 tháng 3 2017

\(ax^2+bx+c=0\)

Do phương trình có 2 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\S>0\\P>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{-b}{a}>0\\\dfrac{c}{a}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{b}{a}< 0\\\dfrac{c}{a}>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\b,a\left(trái.dấu\right)\\c,a\left(cùng.dấu\right)\end{matrix}\right.\)

\(\Rightarrow b,c\) trái đấu

Xét \(cx^2+bx+a=0\)

Giả sử phương trình có 2 nghiệm dương

\(\Rightarrow\left\{{}\begin{matrix}\Delta>0\\P>0\\S>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{-b}{c}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac>0\\\dfrac{c}{a}>0\\\dfrac{b}{c}< 0\end{matrix}\right.\) ( 1 )

Do b , c trái dấu nên ( 1 ) luôn đúng vậy pt \(cx^2+bx+a=0\) luôn có 2 nghiệm dương phân biệt

\(\Rightarrow\) đpcm

Xét pt \(ax^2+bx+c=0\) \(\forall\left\{{}\begin{matrix}x_1>0\\x_2>0\end{matrix}\right.\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}>0\\P=x_1x_2=\dfrac{c}{a}>0\end{matrix}\right.\)( 1 )

Xét pt \(cx^2+bx+a=0\) \(\forall\left\{{}\begin{matrix}x_3>0\\x_4>0\end{matrix}\right.\)

Theo định lý Viet

\(\Rightarrow\left\{{}\begin{matrix}S=x_3+x_4=\dfrac{-b}{c}>0\\P=x_3x_4=\dfrac{a}{c}>0\end{matrix}\right.\)( 2 )

Từ ( 1 ) và ( 2 )

Áp dụng bất đẳng thức Cauchy - Schwarz cho 4 bộ số thực không âm

\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{x_1x_2x_3x_4}\)

\(\Rightarrow x_1+x_2+x_3+x_4\ge4\sqrt[4]{\dfrac{c}{a}.\dfrac{a}{c}}=4\) ( đpcm )

15 tháng 5 2016

+xét đen ta là được

+ dùng cosi là xong

11 tháng 6 2019

Giả sử tồn tại các số nguyên \(x_1,x_2,x_3,x_4,x_5,x_6,x_7\)thỏa mãn phương trình.

Nhận thấy \(x^4_1,,x^4_2,,x^4_3,,x^4_4,x^4_5,x^4_6,x_7^4\) chia cho 16 dư 0 hoặc 1, nên x14   + x24 + x3 + x44  + x54 + x64 + x74 chia cho 16 có số dư là một trong các số 0,   1   ,  2    ,  3   ,4    ,   5,    6,   7   .

Trong đó số 2008 chia cho 16 dư 8. Hai điều này mâu thuẫn với nhau.

Vậy không tồn tại các số nguyên x1, x2,...,x7 thỏa mãn đề bài.

21 tháng 3 2020

Theo đầu bài có \(x_1\)là nghiệm của phương trình \(ax^2+bx+c=0\)nên có

\(ax_1^2+bx_1+c=0\)

chia hai vế cho \(x_1^2\ne0\)ta được \(a+b\frac{1}{x_1}+c\frac{1}{x_1^2}=0\)

ta có \(c.\left(\frac{1}{x_1}\right)^2+b\left(\frac{1}{x_1}\right)+a=0\)

suy ra \(\frac{1}{x_1}\)là nghiệm của của phương trình \(cx^2+bx+a=0\)

Ta chọn \(x_2=\frac{1}{x_1}>0.\)vậy \(x_1x_2=1\)

áp dụng bất đẳng thức Co-si cho 2 hai số dương ta có :

\(x_1+x_2+x_1x_2=x_1+\frac{1}{x_1}+1\ge2\sqrt{x_1.\frac{1}{x_1}}+1=3\left(dpcm\right)\)