\(\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}}\)tìm x thỏa mãn P.
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

ĐKXĐ: \(x>0\)

Ta có: \(P\sqrt{x}=\left(\sqrt{x}+1\right)^2\)

\(\Leftrightarrow\left(\sqrt{x}+1\right)^2=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{x-4}\)

\(\Leftrightarrow x-4\sqrt{x}+4+\sqrt{x-4}=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}=0\)

Vì \(\left(\sqrt{x}-2\right)^2\ge0;\sqrt{x-4}\ge0\forall x\)

\(\Rightarrow\left(\sqrt{x}-2\right)^2+\sqrt{x-4}\ge0\forall x\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\sqrt{x}-2=0\\\sqrt{x-4}=0\end{cases}}\Leftrightarrow x=4\) ( tm )

Vậy...

19 tháng 8 2019

\(đkxđ\Leftrightarrow x\ge0\)

\(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}+\frac{1-\sqrt{x}}{x+\sqrt{x}}\right)\)

\(=\left(\frac{\sqrt{x}.\sqrt{x}-1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}}-\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(=\left(\frac{x-1}{\sqrt{x}}\right):\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\)

\(=\frac{x-1}{\sqrt{x}}:\frac{x-1-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(x-1\right)\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}.\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-1}{\sqrt{x}}\)

\(b,P.\sqrt{x}=6\sqrt{x}-3-\sqrt{x}-4\)

\(\Rightarrow\frac{x-1}{\sqrt{x}}.\sqrt{x}=5\sqrt{x}-7\)

\(\Rightarrow x-5\sqrt{x}+6=0\)

\(\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}\sqrt{x}=2\\\sqrt{x}=3\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=9\end{cases}}}\)

Vậy \(x\in\left\{4;9\right\}\)

23 tháng 10 2016

khó quá

23 tháng 10 2016

các cậu giúp mk nha

24 tháng 9 2018

a/ \(B=\frac{1+x}{1+\sqrt{x}+x}\)

b/ Giải phương trình bậc 2 thì dễ rồi ha

c/ \(\frac{1+x}{1+\sqrt{x}+x}>\frac{2}{3}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2>0\)đung vì x khac 1

24 tháng 9 2018

Phương trình bậc hai là\(x-\sqrt{6x}+1=0\) thì giải làm sao bạn ơi??

7 tháng 7 2017

a, ĐK \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(P=\frac{x-1}{\sqrt{x}}:\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}}.\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

Ta thấy \(P=\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}>0\forall x>0,x\ne1\)

b, P=\(\frac{x+2\sqrt{x}+1}{\sqrt{x}-1}=\frac{\frac{2}{2+\sqrt{3}}+2\sqrt{\frac{2}{2+\sqrt{3}}}+1}{\sqrt{\frac{2}{2+\sqrt{3}}}-1}\)

=\(\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\sqrt{\left(\frac{2}{\left(\sqrt{3}+1\right)^2}\right)}+1}{\sqrt{\left(\frac{2}{2+\sqrt{3}}\right)^2}-1}=\frac{\frac{4}{\left(\sqrt{3}+1\right)^2}+2.\frac{2}{\sqrt{3}+1}+1}{\frac{2}{\sqrt{3}+1}-1}\)

\(=\frac{12+6\sqrt{3}}{1-3}=-6-3\sqrt{3}\)

7 tháng 7 2017

cậu ơi câu c đâu ạ??

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)5) Cho x, y > 1....
Đọc tiếp

1) Cho x > 1. Tìm GTNN của:   ​\(A=\frac{1+x^4}{x\left(x-1\right)\left(x+1\right)}\)

2) Trong các cặp (x;y) thỏa mãn \(\frac{x^2-x+y^2-y}{x^2+y^2-1}\le0\). Tìm cặp có tổng x + 2y lớn nhất.

3) Cho x thỏa mãn \(x^2+\left(3-x\right)^2\ge5\). Tìm GTNN của \(A=x^4+\left(3-x\right)^4+6x^2\left(3-x\right)^2\)

4) Tìm GTNN của \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)

5) Cho x, y > 1. Tìm GTNN của \(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)

6) Cho x, y, z > 0 thỏa mãn: \(xy^2z^2+x^2z+y=3z^2\). Tìm GTLN của \(P=\frac{z^4}{1+z^4\left(x^4+y^4\right)}\)

7) Cho a, b, c > 0. CMR:\(\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\ge\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

8) Cho x>y>0. và \(x^5+y^5=x-y\). CMR: \(x^4+y^4<1\)

9) Cho \(1\le a,b,c\le2\). CMR: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le10\)

10) Cho \(x,y,z\ge0\)CMR: \(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\le\sqrt[3]{\frac{x+y}{2}}+\sqrt[3]{\frac{y+z}{2}}+\sqrt[3]{\frac{z+x}{2}}\)

11) Cho \(x,y\ge0\)thỏa mãn \(x^2+y^2=1\)CMR: \(\frac{1}{\sqrt{2}}\le x^3+y^3\le1\)

12) Cho a,b,c > 0 và a + b + c = 12. CM: \(\sqrt{3a+2\sqrt{a}+1}+\sqrt{3b+2\sqrt{b}+1}+\sqrt{3c+2\sqrt{c}+1}\le3\sqrt{17}\)

13) Cho x,y,z < 0 thỏa mãn \(x+y+z\le\frac{3}{2}\). CMR: \(\sqrt{x^2+\frac{1}{x^2}}+\sqrt{y^2+\frac{1}{y^2}}+\sqrt{z^2+\frac{1}{z^2}}\ge3\sqrt{17}\)

14) Cho a,b > 0. CMR: \(\left(\sqrt[6]{a}+\sqrt[6]{b}\right)\left(\sqrt[3]{a}+\sqrt[3]{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\le4\left(a+b\right)\)

15) Với a, b, c > 0. CMR: \(\frac{a^8+b^8+c^8}{a^3.b^3.c^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

16) Cho x, y, z > 0 và \(x^3+y^3+z^3=1\)CMR: \(\frac{x^2}{\sqrt{1-x^2}}+\frac{y^2}{\sqrt{1-y^2}}+\frac{z^2}{\sqrt{1-z^2}}\ge2\)

3
20 tháng 1 2016

cậu đăng mỗi lần 1 đến 2 câu thôi chứ nhiều thế này ai làm cho hết được

20 tháng 1 2016

Ok lần đầu mình đăng nên chưa biết, cảm ơn cậu đã góp ý, mình sẽ rút kinh nghiệm!!