K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2015

câu GTLN nè:

A= \(2-\frac{5}{3n+2}\) => hiệu lớn nhất <=> số trừ: \(\frac{5}{3n+2}\) bé nhất vì 3n+2 thuộc Ư(5) nên ta xét:

* 3n+2=-1 => 5/-1=-5

* 3n+2=1 => 5/1=5

* 3n+2=5 => 5/5=1

* 3n+2=-5 => 5/-5=-1

=> 3n+2=-1 là nhỏ nhất <=> n= -1 (t/m đk)

 

2 tháng 1 2022

thoi di

21 tháng 3 2016

a) n\(\in\){1;2;4;5}

b)n\(\ne3\)và n\(\in\)Z

k nha bạn

21 tháng 3 2016

a)để A thuộc Z hay a là số nguyên

=>n-1 chia hết n-3

<=>(n-1)-2 chia hết n-3

=>2 chia hết n-3

=>n-3\(\in\){1,-1,2,-2}

=>n\(\in\){4,2,5,1}

b)vì mẫu số của ps luôn luôn\(\ne0\) =>n\(\ne\)3 và 0;n\(\in\)Z

23 tháng 2 2018

 \(A=\frac{n+1}{n-3}\)điều kiện: n-3 khác 0\(\Rightarrow\)n khác 3

để \(A=\frac{n+1}{n-3}\)là số nguyên\(\Rightarrow\)n+1\(⋮\)n-3

\(\Rightarrow\)3(n+1)\(⋮\)n-3

\(\Rightarrow\)3n+3\(⋮\)n-3            (1)

mà n-3\(⋮\)n-3

\(\Rightarrow\)3(n-3)\(⋮\)n-3

\(\Rightarrow\)3n-9\(⋮\)n-3   (2)

từ (1)và(2)\(\Rightarrow\)(3n+3)-(3n-9)\(⋮\)n-3

3n+3-3n+9\(⋮\)n-3

12\(⋮\)n-3

n-3\(\in\)Ư12={\(\pm1,\pm2,\pm3,\pm4,\pm6,\pm12\)}

bạn tự thử nhé

19 tháng 12 2017

cho A=6n-1/3n+1(n thuoc z) hoi a tim n de A nguyen b tim n de A co gia tri nho nhat

Giải:Ta có:A=\(\frac{6n-1}{3n+1}=\frac{6n+2-3}{3n+1}=\frac{2\left(3n+1\right)}{3n+1}-\frac{3}{n+1}=2-\frac{3}{n+1}\)

a,Để A nguyên thì \(\frac{3}{n+1}\in Z\)\(\Rightarrow3⋮\left(n+1\right)\)

\(\Rightarrow n+1\inƯ\left(3\right)=\left\{-3,-1,1,3\right\}\)

\(\Rightarrow n\in\left\{-4,-2,0,2\right\}\)

b,Để A có GTNN thì \(\frac{3}{n+1}\) lớn nhất

\(\Rightarrow n+1\) bé nhất và n+1>0

\(\Rightarrow n+1=1\Rightarrow n=0\)

Nên GTNN của A=-1

27 tháng 2 2018

Để phân số \(M=\frac{3N+4}{N-1}\inℤ\)thì \(3N+4⋮N+1\)

Ta có :

\(3N+4=N+N+N+4\)

                \(=\left(N+1\right)+\left(N+1\right)+\left(N+1\right)+4-3\)

                \(=3\left(N+1\right)+1\)

Vì \(N+1⋮N+1\)nên \(3\left(N+1\right)⋮\left(N+1\right)\)

Vì \(3\left(N+1\right)⋮N+1\)nên để \(3\left(N+1\right)+1⋮N+1\)thì \(1⋮N+1\)

\(\Rightarrow N+1\in\left\{1;-1\right\}\)

\(\Rightarrow N\in\left\{0;-2\right\}\)

Vậy \(N\in\left\{0;-2\right\}\)

27 tháng 2 2018

Ta có : 

\(M=\frac{3n+4}{n-1}=\frac{3n-3+7}{n-1}=\frac{3n-3}{n-1}+\frac{7}{n-1}=\frac{3\left(n-1\right)}{n-1}+\frac{7}{n-1}=3+\frac{7}{n-1}\)

Để \(M\) là số nguyên thì \(7⋮\left(n-1\right)\) \(\Rightarrow\) \(\left(n-1\right)\inƯ\left(7\right)\)

Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)

Suy ra : 

\(n-1\)\(1\)\(-1\)\(7\)\(-7\)
\(n\)\(2\)\(0\)\(8\)\(-6\)

Vậy \(n\in\left\{-6;0;2;8\right\}\)