K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2015

=>1 thừa số :12 dư 11 và 1thua so :12 dư 1

=>p+q chia het 12

21 tháng 2 2020

Vì q nguyên tố, q > 3 nên q có dạng 6k + 1 hoặc 6k + 5 \(\left(k\inℕ\right)\)

+)Nếu \(q=6k+1\)thì \(p=q+2=6k+1+2=6k+3=3\left(2k+1\right)⋮3\)

Mà p > 3 nên p là hợp số (loại)

+)Nếu \(q=6k+5\)thì \(p=q+2=6k+5+2=6k+7\)

suy ra \(p+q=\left(6k+5\right)+\left(6k+7\right)=12k+12=12\left(k+1\right)⋮12\)

Vậy \(p+q⋮12\left(đpcm\right)\)

31 tháng 5 2018

hóng bài giải câu 1 quá

11 tháng 11 2020

a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3

Tương tự, ta được q2-1 chia hết cho 3

Suy ra: p2-q2 chia hết cho 3(1)

Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8

Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8

Suy ra :p2-qchia hết cho 8(2)

Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24

24 tháng 3 2017

ta có p là số nguyên tố lớn hơn 3 và p=5,7,11,13,17,......

24 là số chẵn mà p2 là số lẻ nên 

pkhông chia hết cho 24

(mới lớp 5 không biết nhiều ^^ )

24 tháng 3 2017

B(24) thuộc{24;48;72;96;...}

mà  

10 tháng 11 2020

Ta có: \(\left(m-1\right)m\left(m+1\right)⋮3\)mà (m,3)=1 nên

\(\left(m-1\right)\left(m+1\right)⋮3\)(1)

m là số nguyên tố lớn hơn 3 nên m là số lẻ , m-1, m+1 là 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp có 1 số là bội của 4 nên tích của chúng chia hết cho 8(2)

Từ 1,2 => (m-1)(m+1) chia hết cho 2 số nguyên tố cùng nhau 3 và 8

Vậy (m-1)(m+1) chia hết cho 24

22 tháng 11 2017

Chào bạn, Ta sẽ cm bài toán này như sau

-Vì p ; q là các số nguyên tố lớn hơn 3 nên p;q có hai dạng là: \(3k\pm1\)

- Khi đó: \(p^2;q^2\equiv1\left(mod3\right)\Rightarrow p^2-q^2\equiv0\left(mod3\right)hay\)

\(p^2-q^2⋮3\left(1\right)\)

Mặt khác ta lại thấy : p ; q là các số nguyên tố lớn hơn 3\(\Rightarrow\)p ; q lẻ \(\Rightarrow p^2;q^2l\text{ẻ}\)\(\Rightarrow p^2-q^2ch\text{ẵn}\)\(\Rightarrow p^2-q^2⋮2\left(2\right)\)

Từ (1) ; (2) và (2;3)=1 ta suy ra 

\(p^2-q^2⋮6\left(\text{đ}pcm\right)\)

Cảm ơn bạn đã theo dõi câu trả lời

22 tháng 11 2017

mik chỉ c/m đc p^2-q^2 chia hết cho 2 thôi

12 tháng 11 2024

ta có: p là số nguyên tố lớn hơn 3 ⇔ (p;3)=1.

        vì p; p+1; p+2 là 3 số tự nhiên liên tiếp.

⇒ p, p+1, p+2 có 1 trong 3 số chia hết cho 3.

mà (p;3)=1 nên p+1; p+2 có 1 số chia hết cho 3.

Vậy p+1,p+2 có 1 số chia hết cho 3.

 

17 tháng 8 2016

Số nguyên tố lớn hơn 3 thì không chia hết cho 4,8 và cho 2. Một số chia cho 8 dư 0,1,2,3,4,5,6,7--> Nếu là số nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia hết cho 8 dư 2 thì viết dưới dạng 8k+2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)--> Số nguyên tố bình phương lên chia cho 8 dư 1(vì 12 chia cho 8 dư 1, 32=9 chia 8 dư 1, 52=25 chia 8 dư 1, 72=49 chia 8 dư 1).

Vậy cả p2 và qchia 8 đều dư 1 --> Hiệu p2-q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu.

Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 --> Bình phương số đó chia cho 3 dư 1 (vì 12=1 chia 3 dư 1; 22=4 chia 3 dư 1)--> p2 và qchia cho 3 đều dư 1 --> Hiệu p2 - qchia hết cho 3 (vì trừ cho nhau phần dư sẽ triệt tiêu đối với phép trừ)

--> p2 - q2 đều chia hết cho 3 và 8 , mà 8 và 3 là hai số nguyên tố cùng nhau--> p2 - q2 chia hết cho 3 nhân 8=24