K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

copy cái bài trên mạng ak :) có đáp án rồi mờ :) đăng lên làm j ? :))

27 tháng 10 2019

Có \(B=n^4-27n^2+121\)

\(=n^4+22n^2+121-49n^2\)

\(=\left(n^2+11\right)^2-\left(7n\right)^2\)

\(=\left(n^2+11-7n\right)\cdot\left(n^2+11+7n\right)\)

Vì \(n\in N\)nên \(n^2+7n+11>11\)

Nếu \(n^2-7n+11< 0\Rightarrow B< 0\left(loại\right)\)

Nếu \(n^2-7n+11=0\Rightarrow B=0\left(loại\right)\)

Nếu \(n^2-7n+11>1\)(loại vì B là tích của 2 số nguyên dương > 1 nên ko là số nguyên tố)

Vậy nên \(n^2-7n+11=1\)

\(\Leftrightarrow n^2-7n+10=0\)

\(\Leftrightarrow n^2-2n-5n+10=0\)

\(\Leftrightarrow\left(n-2\right)\cdot\left(n-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}n-2=0\\n-5=0\end{cases}\Rightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}}\)

Vậy.............

26 tháng 10 2020

\(B=n^4-27n^2+121\)

\(B=n^4+22n^2+121-49n^2\)

\(B=\left(n^2+11\right)^2-49n^2\)

\(B=\left(n^2+11-7n\right)\left(n^2+11+7n\right)\)

Vì n là số tự nhiên => \(n^2+11+7n>11\)

Để B là số nguyên tố

=> \(n^2-7n+11=1\)

\(\Leftrightarrow\orbr{\begin{cases}n=2\\n=5\end{cases}}\)

26 tháng 3 2024

what

1 tháng 3 2021

1) n+ 4 = (n+ 4n+ 4) - 4n= (n+ 2)- (2n)= (n2 + 2 + 2n).(n+ 2 - 2n)

Ta có n + 2n + 2 = (n+1)+ 1 > 1 với n là số tự nhiên 

n- 2n + 2 = (n -1)2  + 1  1 với n là số tự nhiên

Để  n4 + 4 là số nguyên tố =>  thì  n4 + 4 chỉ có 2 ước là chính nó và 1 

=> n + 2n + 2  = n4 + 4 và n- 2n + 2 = (n -1)2  + 1  = 1 

(n -1)2  + 1  = 1 => n - 1= 0 => n = 1

Vậy n = 1 thì nlà số nguyên tố

1 tháng 3 2021

undefined

undefined

NM
17 tháng 8 2021

a.\(n^4+4=n^4+4n^2+4-4n^2=\left(n^2+2\right)^2-\left(2n\right)^2=\left(n^2+2n+2\right)\left(n^2-2n+2\right)\)

nguyên tố nên thừa số nhỏ hơn là \(n^2-2n+2=1\Leftrightarrow\left(n-1\right)^2=0\Leftrightarrow n=1\)thỏa mãn đề bài

b. ta có :\(n^{1994}+n^{1993}+1-\left(n^2+n+1\right)=\left(n^{1992}-1\right)\left(n^2+n\right)\)

mà \(1992⋮3\Rightarrow n^{1992}-1⋮n^3-1⋮n^2+n+1\)

nên \(n^{1994}+n^{1993}+1⋮n^2+n+1\)mà nó là số nguyên tố nên

\(n^2+n+1=1\Leftrightarrow n=0\) ( Do n là số tự nhiên nên n= -1 loại bỏ đi )

9 tháng 8 2019

Em tham khảo!

Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath

Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath 

Ta có :

\(P=\)\(\left(n^2-3\right)^2+16\)

\(=n^4-6n^2+9+16\)

\(=n^4-16n^2+10n^2+25\)

\(=\left(n^4+10n^2+25\right)-16n^2\)

\(=\left(n^2+5\right)^2-\left(4n\right)^2\)

\(=\left(n^2+5-4n\right)\left(n^2+5+4n\right)\)

Để P là số nguyên tố cần \(\orbr{\begin{cases}n^2+5-4n=1\\n^2+5+4n=1\end{cases}}\)

Mà nhận thấy \(\left(n^2+5-4n\right)< \left(n^2+5+4n\right)\)nên \(\Rightarrow n^2+5+4n=1\left(n\in N\right)\Leftrightarrow n^2+4n+5-4=0\)

    \(\Leftrightarrow n^2+4n+4=0\Leftrightarrow\left(n+2\right)^2=0\)

     \(\Leftrightarrow n-2=0\Leftrightarrow n=2\)

Vậy.................

Ghi sai số dòng thứ 4 từ dưới lên nha - là \(n^2+4n+5-1\)  nha , k phải \(n^2+4n+5-4\)nha 

thông cảm đánh sai số

11 tháng 1 2018

n = 1 ta thấy thỏa mãn

Nếu n > 2 Hoặc n = 2  thì :

n1998 + n1997 + 1 > n+ n + 1

Mặt khác :

n1998 + n1997 + 1 = n2 . ( n1986 - 1 ) + n . ( n1986 - 1) + ( n+ n + 1 )

Nên : n2 + n + 1/n1987 + 1

Vậy n1988 + n1987 + 1 là hợp số ( ĐPCM )

Chỗ nào ko hiểu cứ ib cho mik!

11 tháng 1 2018

Ôi mik xin lỗi mik cứ tưởng là đề bài là chứng minh!

Xin lỗi bn nhiều!

Bn cứ chọn sai đi!