K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Bạn tự giải

b) Ta có: \(\Delta'=m^2-5\)

Để phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\) \(\Leftrightarrow\left[{}\begin{matrix}m>\sqrt{5}\\m< -\sqrt{5}\end{matrix}\right.\)

 Vậy ...

a) Thay m=2 vào pt, ta được:

\(x^2-2\left(2-1\right)x-2\cdot2+6=0\)

\(\Leftrightarrow x^2-2x+2=0\)

\(\Leftrightarrow x^2-2x+1+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+1=0\)(Vô lý)

Vậy: Khi m=2 thì phương trình vô nghiệm

b) Ta có: \(\text{Δ}=\left[-2\left(m-1\right)\right]^2-4\cdot1\cdot\left(-2m+6\right)\)

\(=\left(2m-2\right)^2-4\left(-2m+6\right)\)

\(=4m^2-8m+4+8m-24\)

\(=4m^2-20\)

Để phương trình có hai nghiệm phân biệt thì Δ>0

\(\Leftrightarrow4m^2-20>0\)

\(\Leftrightarrow4m^2>20\)

\(\Leftrightarrow m^2>5\)

\(\Leftrightarrow\left[{}\begin{matrix}m< -\sqrt{5}\\m>\sqrt{5}\end{matrix}\right.\)

21 tháng 5 2018

a) \(x^2+2\left(m-1\right)x-6m-7=0\)\(0\)

\(\left(a=1;b=2\left(m-1\right);b'=m-1;c=-6m-7\right)\)

\(\Delta'=b'^2-ac\)

\(=\left(m-1\right)^2-1.\left(-6m-7\right)\)

\(=m^2-2m+1+6m+7\)

\(=m^2+4m+8\)

\(=m^2+2.m.2+2^2+4\)

\(=\left(m+2\right)^2+4>0,\forall m\)

Vì \(\Delta'>0\) nên phương trình ( 1 ) luôn có 1 nghiệm phân biệt với mọi m 

NV
22 tháng 3 2022

a. Phương trình có nghiệm \(x=-1\) nên:

\(\left(-1\right)^2-2\left(m-1\right).\left(-1\right)+m-5=0\)

\(\Leftrightarrow1+2m-2+m-5=0\)

\(\Leftrightarrow m=2\)

Khi đó: \(x_2=-\dfrac{c}{a}=-\dfrac{m-5}{1}=-\dfrac{2-5}{1}=3\)

b.

\(\Delta'=\left(m-1\right)^2-\left(m-5\right)=m^2-3m+6=\left(m-\dfrac{3}{2}\right)^2+\dfrac{15}{4}>0;\forall m\)

\(\Rightarrow\) Pt luôn có 2 nghiệm phân biệt với mọi m

c.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m-5\end{matrix}\right.\)

\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)

\(A=4\left(m-1\right)^2-2\left(m-5\right)\)

\(A=4m^2-10m+14=4\left(m-\dfrac{5}{4}\right)^2+\dfrac{31}{4}\ge\dfrac{31}{4}\)

\(A_{min}=\dfrac{31}{4}\) khi \(m-\dfrac{5}{4}=0\Rightarrow m=\dfrac{5}{4}\)

NV
12 tháng 4 2021

a. Bạn tự giải

b.

\(\Delta=\left(3m-1\right)^2-4\left(2m^2+2m\right)=m^2-14m+1\)

Pt có 2 nghiệm pb khi \(m^2-14m+1>0\) (1)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=3m-1\\x_1x_2=2m^2+2m\end{matrix}\right.\)

\(\left|x_1-x_2\right|=2\Leftrightarrow\left(x_1-x_2\right)^2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2+2m\right)=4\)

\(\Leftrightarrow m^2-14m-3=0\Rightarrow m=7\pm2\sqrt{13}\) (đều thỏa mãn (1))

12 tháng 2 2019

viết lại câu hỏi khác đi, đề không rõ ràng X với x rồi . lung tung, dung công cụ soạn thảo đi nha bạn

AH
Akai Haruma
Giáo viên
11 tháng 5 2021

Lời giải:

a) $\Delta=(m+1)^2-(2m-2)=m^2+3>0$ với mọi $m\in\mathbb{R}$ nên PT luôn có 2 nghiệm phân biệt với mọi $m\in\mathbb{R}$

b) Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2(m+1)\\ x_1x_2=2m-2\end{matrix}\right.\)

Khi đó:

\(E=x_1^2+2(m+1)x_2+2m-2=x_1^2+(x_1+x_2)x_2+x_1x_2=x_1^2+x_2^2+2x_1x_2=(x_1+x_2)^2=4(m+1)^2\)