Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì phương trình đã cho là phương trình bậc hai nên để pt đã cho có nghiệm buộc \(\Delta\)'\(\ge\)0
\(\Leftrightarrow\left(-m-4\right)^2-\left(2m-1\right)\left(5m+2\right)\ge0\)
\(\Leftrightarrow-9m^2+9m+17\ge0\)
Tới đây mình bấm máy tính fx 570vn thì ra còn ai rảnh thì xài bảng xét dấu
\(\Leftrightarrow\dfrac{3-\sqrt{77}}{6}\le m\le\dfrac{3+\sqrt{77}}{6}\)
Vậy với .....
b, Theo hệ thức Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=-\dfrac{b}{a}=\dfrac{2\left(m+4\right)}{2m-1}\\P=x_1.x_2=\dfrac{c}{a}=\dfrac{5m+2}{2m-1}\end{matrix}\right.\)
c,Từ \(S=\dfrac{2m+8}{2m-1}\Leftrightarrow S=1+\dfrac{9}{2m-1}\\ \Leftrightarrow\left(S-1\right)\left(2m-1\right)=9\\ \Leftrightarrow2m-1=\dfrac{9}{S-1}\\ \Leftrightarrow m=\dfrac{S+8}{2S-2}\)
Thay \(m=\dfrac{S+8}{2S-2}\) vào \(P=\dfrac{5m+2}{2m-1}\) ta được:
\(P=\dfrac{7S+6}{18}\)
\(\Leftrightarrow18P=7S+6\)
Hay \(18x_1x_2=x_1+x_2+6\)
Vậy ....
a, \(\Delta=\left(5m-1\right)^2-4\left(6m^2-2m\right)=25m^2-10m+1-24m^2+8m\)
\(=m^2-2m+1=\left(m-1\right)^2\ge0\forall m\left(đpcm\right)\)
c, Theo hệ thức Vi-lét ta có: \(\hept{\begin{cases}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{cases}}\)
\(\Rightarrow x^2_1+x^2_2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)
\(\Leftrightarrow25m^2-10m+1-12m^2+4m=1\)
\(\Leftrightarrow13m^2-6m=0\)
\(\Leftrightarrow m\left(13m-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\13m-6=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\)
Vậy \(\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}\) thì pt có 2 nghiệm \(x_1;x_2\) thỏa mãn \(x^2_1+x^2_2=1\)
Tớ sửa lại đề 1 chút:
\(x^2-\left(5m-1\right)x+6m^2-2m=0\)
Gọi x1;x2 là các nghiệm của PT. Tìm m để \(x_1^2+x_2^2=1\)
Giải
Theo hệ thức Vi-ét ta có:\(\hept{\begin{cases}x_1+x_2=5m-1\\x_1x_2=6m^2-2m\end{cases}}\)
Do đó: \(x_1^2+x_2^2=1\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=1\)
\(\Leftrightarrow\left(5m-1\right)^2-2\left(6m^2-2m\right)=1\)
\(\Leftrightarrow25m^2-10m+1-12m^2+4m=1\)
\(\Leftrightarrow13m^2-6m=0\)
\(\Leftrightarrow m\left(13m-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=0\\13m-6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=\frac{6}{13}\end{cases}}}\)
Vậy m=0 hoặc m=\(\frac{6}{13}\)thì phương trình có 2 nghiệm x1;x2 thỏa mãn \(x_1^2+x_2^2=1\)
s = 34
p= 67
Bạn có thể giai bai được k, cảm ơn bạn nhiều Kim Ngọc Thảo